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Heart rate variability analysis using 24-h Holter monitoring is frequently performed to assess the

cardiovascular status of a patient. The present retrospective study is based on the beat-to-beat inter-

val variations or DRR, which offer a better view of the underlying structures governing the cardio-

dynamics than the common RR-intervals. By investigating data for three groups of adults (with

normal sinus rhythm, congestive heart failure, and atrial fibrillation, respectively), we showed that

the first-return maps built on DRR can be classified according to three structures: (i) a moderate

central disk, (ii) a reduced central disk with well-defined segments, and (iii) a large triangular

shape. These three very different structures can be distinguished by computing a Shannon entropy

based on a symbolic dynamics and an asymmetry coefficient, here introduced to quantify the bal-

ance between accelerations and decelerations in the cardiac rhythm. The probability P111111 of suc-

cessive heart beats without large beat-to-beat fluctuations allows to assess the regularity of the

cardiodynamics. A characteristic time scale, corresponding to the partition inducing the largest

Shannon entropy, was also introduced to quantify the ability of the heart to modulate its rhythm: it

was significantly different for the three structures of first-return maps. A blind validation was per-

formed to validate the technique. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928334]

Designing an easy-to-use technique providing a reliable

characterization of the heart rate variability is of crucial

importance for many clinical issues. Among the relevant

properties is the complexity of the cardiodynamics, which

should be neither too small nor too large, and the ability

of the heart to return to its “resting” rhythm. These

properties are here estimated using a Shannon entropy

and an asymmetry coefficient, respectively, both of them

being computed from a Poincar�e map built from the var-

iations between two successive RR-intervals. A character-

istic time scale of the sinus variability, associated with the

maximum Shannon entropy observed when the threshold

used to construct the partition of the Poincar�e map is var-

ied, was very efficient to discriminate the different pat-

terns we observed. This technique was designed by

investigating heart rate variability on a training set of 45

adults from three patho-physiological groups and vali-

dated by blind testing on a set of 15 additional patients.

I. INTRODUCTION

Heart activity is driven by an electrical conduction

system governed by the sinoatrial node that stimulates the

myocardium. Variability of the beat-to-beat interval is a

physiological feature depending on different levels of

regulation whose main component is the autonomic nervous

system. Investigating RR interval variability allows to assess

the control mechanisms and can be used as an indicator of

cardiovascular health in any population. Modifications in

heart rate variability reveal pathophysiological disorders and

can be associated with a range of severe diseases.1 A

decreased variability was found in patients with congestive

heart failure (CHF),2,3 left ventricular dysfunction,4 or dia-

betic neuropathy.5 In particular, reduced variability is a pre-

dictor of mortality in patients who underwent a myocardial

infection.6

In all these works, heart rate variability has been studied

using traditional time or frequency-dependent domain indi-

cators. However, it appears that nonlinear analysis could bet-

ter characterize the cardiodynamics.7–9 This can be justified

since heart rate variability results from autonomic nervous

system and humoral factors, which can be only described

with many variables coupled in nonlinear and complex

ways.10 The application of nonlinear dynamics methods to

biomedical data already provided valuable information, and

a prognostic value was given, for instance, using symbolic

dynamics.8 Symbolic dynamics is a powerful technique to

describe aperiodic behaviour and periodic orbits. It was, for

instance, used by Levinson for proving the existence of ape-

riodic solution in a driven van der Pol equation.11 It is of a

fundamental importance for describing how periodic orbits

are organized within chaotic attractors.12,13a)Electronic mail: fresnele@coria.fr

1054-1500/2015/25(8)/083111/11/$30.00 VC 2015 AIP Publishing LLC25, 083111-1
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Our objective is not to determine whether cardiac dy-

namics is chaotic or not, mostly because we do not have yet

a conclusive answer concerning a possible underlying deter-

minism14,16 as it was pointed out in the challenge proposed

by Glass.17 Indeed, some recent studies tend to show that

cardiac variability could result from cellular stochastic proc-

esses.18 It is also influenced by respiration19 for which a first

indication for the existence of an underlying determinism

was recently provided in patients under mechanical ventila-

tion.20 Such a lack of proof for a chaotic cardiodynamics

does not prevent us to apply tools borrowed to the nonlinear

dynamical systems theory.

The aim of this work is thus to develop an easy-to-use

technique to analyze heart rate variability using 24-h Holter

monitoring and to discriminate various classes of patients as

challenged by Glass,17 that is, healthy subjects, patients with

congestive heart failure, and patients with atrial fibrillation.

After having established our procedure using a cohort of 45

patients from the Physionet database, such a technique was

validated with a blind test with 15 additional patients.

II. METHODS

A. Heart rate variability mechanisms

Cardiodynamics is largely under the control of the auto-

nomic nervous system,1,21 which is classically divided into

two subsystems. The parasympathetic system slows the heart

rate via the vagus nerve and the release of acetylcholine

while the sympathetic system accelerates the pace via b-

adrenegic receptors.22 Acceleration and deceleration in the

heart rhythm thus result from two opposite physiological

processes that can be modulated by external factors inducing

short or long-term variations in the heart period.23 Their ori-

gin can be central as vasomotor and respiratory centers, or

peripheral as oscillations in the arterial pressure. Other

mechanisms as the circadian rhythm or short-term factors

such as physical efforts, posture, and stress have an influence

on the heart rate. In practice, the measured heart rate is the

sum of the intrinsic heart rate and its dependence on vagal

and sympathetic modulations as well as by various compo-

nents. The interrelations existing between the heart rate and

the vagal and sympathetic effects were for the first time

quantitatively described by Rosenblueth and Simeone24 in

the form

HR ¼ m � n � HRi ; (1)

where HR is the heart rate in beats per minute (bpm), m is

the sympathetic influence (m � 1), n is the vagal influence

(0 < n � 1Þ, and HRi is the intrinsic heart rate in bpm.

Gender and age are also known to affect the heart rate

variability. Many studies showed that heart rate variability is

reduced when age is increased. The intrinsic heart rate was

proposed by Jose and Collison25 as a function of the age a
(in years) as

����HRi ¼ 118� 0:55 a ðr ¼ �0:63Þ for males

HRi ¼ 119� 0:61 a ðr ¼ �0:67Þ for females ;
(2)

where HRi is the intrinsic heart rate in bpm. The maximal

heart rate (or HRmax) was strongly related to age (r ¼ �0:90)

according to26

HRmax ¼ 208� 0:7 a : (3)

The same linear regression was used for men and women

and was not dependent on variations in individual exercise

training. This reduction in the maximal heart rate could be

linked to the age-related reduction in intrinsic heart rate as

previously discussed. This is in agreement with the fact that

older people have a vagal modulation of the heart rate

smaller than younger adults.27 The reduction in heart rate

variability observed among older people may result from

two phenomena: a reduction in the intrinsic heart rate and in

the cardio-vagal modulation.

Ageing effects in heart rate variability have been eval-

uated in various studies: we reported in Table I conclusions

of few of them.28–31 In all studies, a significant reduction

of the heart rate variability in older people as assessed by

time and frequency-dependent indicators was observed. For

instance, the SDNNindex is anti-correlated with age according

to28

SDNNindex ¼ 85:0� 0:57 a ðr ¼ �0:63Þ : (4)

In particular, a reduction in vagal modulation was high-

lighted by a reduction in parasympathetically mediated indi-

ces of heart rate variability (RMSSD, pNN50).

Cardiodynamics was much more investigated in adults

than in newborns and infants. The latter have different cardi-

orespiratory regulatory mechanisms. Healthy neonates pres-

ent brief episodes of cardiac deceleration followed by

rebound acceleration: these variations in the heart rate sug-

gest an unstable behaviour of the servomechanism that

TABLE I. Summary of selected studies investigating the effects of ageing on heart rate variability indicators.

Reference No. Subjects Age range Conclusions

29 101 20–69 Time (SDNN, SDANN, SDNNindex, RMSSD, pNN50)a and frequency-domain HRV indices are anti-correlated to age

30 60 26–76 All calculated time and frequency domain HRV indices were less in older than in younger men

28 260 10–99 Time–domain HRV indices are significantly anti-correlated to ageing

31 276 18–71 Time and frequency-domain HRV indices are anti-correlated to age

aSDNN, standard deviation of all NN intervals; SDANN, standard deviation of the average NN intervals in all 5 min segments of the entire recording;

SDNNindex, mean of the standard deviation of all NN intervals for all 5 min segments of the entire recording; RMSSD, square root of the mean squared differ-

ence of successive NN intervals; pNN50, number of pairs of successive NN intervals differing by more than 50 ms divided by the total number of NN

intervals.
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maintains a homeostatic level of the heart rate. The first year

of life seems to be determinant in the maturation process of

these mechanisms.32 During infancy, a progressive matura-

tion of the autonomic nervous system is observed, with de-

velopmental changes of vagal and sympathetic mediation of

heart rate. Finley and Nugent33 brought out this age depend-

ency in heart rate variability by using a frequency domain

study in children from 0 to 24 years. Time and frequency do-

main indices were found to be correlated to age in infants

and children aged 3 days to 14 years.34 As we previously

mentioned, these indices were found anti-correlated to the

age of adults as reported in Table I.

To sum up, the autonomic nervous system is mostly re-

sponsible for the heart rate variability, which evolves during

the whole life. In infancy and in older adults, there is a prev-

alence of the sympathetic activity over a weak vagal activity.

In younger adults, the parasympathetic activity is prevailing,

combined with a moderate to high level of sympathetic ac-

tivity.35 The heart rate variability is thus at a low level in the

early life, increases during childhood until young adulthood,

and then decreases until the end of life. These features will

be used in Subsection II B to define an age-dependent parti-

tion for building a symbolic dynamics.

B. Nonlinear tools

Cardiodynamics is here investigated using the differen-

ces between successive RR intervals, that is, using

DRRn ¼ RRnþ1 � RRn : (5)

DRR were first used by Tateno and Glass36 for detecting

atrial fibrillation (AF) by using the density histograms of RR

and DRR intervals. A similar technique was used by Huang

et al.37 Atrial fibrillation was also detected by plotting DRRn

versus RRn intervals.38 DRR were also used by Ritscher and

Sarkar.39,40 Due to the short time series (2 min) used for plot-

ting the first-return maps, the structures observed in Ref. 16

and in the present work were not seen in Refs. 39 and 40.

First-return maps on DRR over a long periodic window

(more than one hour) were introduced in Ref. 16, where a

Shannon entropy based on a partition of the first-return maps

was found significantly higher in patients with atrial fibrilla-

tion. The root mean square of DRR and a Shannon entropy

computed from the RR-intervals were used for detecting

atrial fibrillation in Ref. 41, quoting.36,40 In particular, they

found that the Shannon entropy is significantly greater in

patients with atrial fibrillation than in those with sinus

rhythm as showed in Ref. 16. Working with DRR allows to

analyze the variations in the heart rate and to overcome any

long-term drift due to the sinus activity.16 We built a spatial

representation of this variable by plotting first-return maps

(or Poincar�e maps), which consists in plotting a variable

associated with the (nþ 1)th point versus its value for the

nth point. We built first-return maps for the whole data set

(at least many hours in each case) as it was done for comput-

ing first-return map from RR-intervals in Ref. 42 or from

DRR in Ref. 16.

For healthy adults, these maps present a circular cloud

of points centered around zero and associated with a low

variability, which is typically associated with the sinus vari-

ability. Isolated points distant from the first bisecting line are

representative of large beat-to-beat variations in the heart

rate, thus corresponding to arrhythmias. In a previous

study,16 we showed that first-return maps present specific

structures that could be summarized as follows. A small disk

centered at the origin can be seen for healthy people, four

segments for people with ventricular premature contractions

(VPCs) and a triangular shape for patients suffering from

atrial fibrillation. As we will discuss in Section III, these

structures could be considered as the main architectures

encountered in many situations.

In order to characterize them, we started by computing

the angular distribution of points located out of the central

disk, as

hn ¼ arg ðDRRn þ i DRRnþ1Þ : (6)

Distribution of angles hn helped us to clearly specify the

characteristics of these main structures we observed in first-

return maps. This angular distribution allows to numerically

assess the shape of first-return maps. However, the time sam-

pling of the ECG implies a quantization of the RR intervals,

which is also present in the DRR. This quantization of the

space defined by the axes DRRn and DRRnþ1 causes an arti-

fact in the distribution of the angles, the samples being pre-

dominantly grouped in a few specific angles. In order to

avoid that, we added a random noise to each DRR time se-

ries, taken from a uniform distribution bounded inside the

quantization intervals, such as the re-quantization of the

modified series is identical to that performed on the initial

data. The resulting quantization step after noise addition is

much smaller, that is in the order of the computer precision.

Moreover, only the points located at a distance greater than

100 ms from the center of the first-return maps were consid-

ered, in order to highlight the variations in the heart rate that

are not induced by the sinus node. It also prevents from a

substantial variability of the computed angles since the

points that are close to the center of the maps are more likely

to induce great angular variations under the noise influence.

The heart dynamics is investigated using a symbolic dy-

namics based on a partition of first-return maps into domains

chosen for distinguishing normal variability from arrhyth-

mias. As we discussed earlier, the heart rate variability is

related to age and so the size of the central disk associated

with sinus variability. The range visited by DRRn is split into

three domains according to the partition

rn ¼
0 DRRn � �s

1 if �s < DRRn < þs

2 DRRn � þs ;

�������
(7)

where symbol 1 represents small variations due to the sinus

rhythm (the central disk), symbol 0 is associated with fast

decreasing of RR intervals, and symbol 2 corresponds to fast

increasing of RR intervals. Such a symbolic dynamics thus

transforms series of real numbers into symbol sequences that

are easier to treat and interpret.16

083111-3 Fresnel et al. Chaos 25, 083111 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.239.1.231 On: Thu, 27 Aug 2015 13:36:04



In order to better distinguish different groups of patients

with the same age but with different diseases, the partition

should be only age dependent. Such a dependency should be

related to those demonstrated in Eqs. (2), (3), and (4) and

to the fact that variability is developed during infancy.

According to the slope of the curve for the heart rate index

or the SDNNindex versus age, it is possible to choose a linear

dependency for adults as

sðaÞ ¼ 89� 0:60 a; (8)

where a is the patient age in years and s is the “radius” of the

central disk in milliseconds. The coefficient “0.60” corre-

sponds to a rough approximation of the slope of various

curves versus age a as discussed in Section II A (see Eqs.

(2), (3), and (4)). The intercept value was determined by

trial-and-errors for providing a good discrimination between

patients with various diseases. This value can be varied a lit-

tle without significantly affecting the results. Based on a pre-

liminary investigation of the heart dynamics recorded in

newborns, we found that the threshold should be around

25 ms for few month newborns. This assertion was confirmed

by measures found in the literature.15 The maximal variabili-

ty, and consequently the maximal threshold s, being assumed

to be observed at about 20 years, we constructed a depend-

ency of s versus the age according to an exponential function

s að Þ ¼ 1� exp � a

s1

� �� �
89� s0 � 0:60 að Þ þ s0; (9)

where s1 is a time constant equal to 7 years and s0 represents

the initial threshold, that is 25 ms for the newborn infants.

When only adults are considered, the linear regression (8) is

sufficient to determine the threshold s, as the exponential

function converges towards the linear curve designed for

adults.

Once the symbolic dynamics is built according to parti-

tion (7), the heart variability is investigated in terms of sub-

sequences of a given number Nq of symbols. We used Nq¼ 6

consecutive symbols, taken among the Np¼ 3 different sym-

bols {0,1,2}. This leads to N
Nq
p ¼ 36 ¼ 729 possible sequen-

ces. Our statistics is thus correctly defined since a 24-h

Holter contains about 100 000 RR intervals. From these sym-

bolic sequences, we choose to characterize the cardiodynam-

ics by computing a Shannon entropy that was introduced to

measure the information production rate of a process43 and

already used in Ref. 16. We are here using such an entropy

as a measure of the “complexity” of the dynamics, a small

entropy being associated with a simple (periodic) solution

and a large one with a complex (aperiodic) solution.

Typically, the entropy for a period 1 regime is equal to zero

since there is no information produced from an event to the

next one. Contrary to this, the entropy is maximum when all

possible sequences (distinguished states) are equiprobable.

The Shannon entropy is defined as

~Sh ¼ �
XNNq
p �1

n¼0

Pn log Pn; (10)

where Pn is the realization probability of the nth symbolic

sequence among the 729 possible ones where n corresponds

to the integer of the 6-symbol sequence read in base 3. The

Shannon entropy is normalized by the largest entropy, which

is obtained when all sequences are equiprobable with a

probability

Pn ¼
1

N
Nq
p

8nð Þ ; (11)

we thus have

Smax ¼ �
XNNq
p �1

n¼0

1

Np
Nq

log
1

Np
Nq

¼ Nq log Np ¼ 6 log 3 ¼ 6:59 :

The relative Shannon entropy Sh ¼
~Sh

Smax
is thus within the

interval [0, 1]. A relative Shannon entropy Sh close to 1

implies a very complex dynamics for which arrhythmias are

frequent. By definition, sinus rhythm is mostly associated

with small variations (symbols “1”) and characterized by an

entropy close to 0. In order to distinguish patients with a too

small variability (realizing almost only sequences “111111”)

from the normal ones, the threshold s is thus small enough to

induce entropy significantly greater than 0 for normal sub-

jects. As we will see in Section III, the entropy for subjects

with a normal sinus rhythm (NSR) is roughly 0.3. This

means that, if we consider that the 40 sequences containing

only isolated symbols “0” and/or “2” (i.e., they are between

two symbols “1”) are equiprobable and that each one repre-

sents around 1% of the realized sequences (the others being

the sequence “111111”), we have

Snorm ¼
�1

6:59

60

100
log

60

100
þ 40� 1

100
log

1

100

� �
¼ 0:33:

(12)

A “normal” cardiodynamics is therefore associated with

roughly 30% of isolated fast variations, according to our

approach.

The symbolic dynamics defined by partition (7) splits

the first-return map into 9 panels (Fig. 1), each of them being

characterized by a probability of visits gij, where i is the

symbol assigned to DRRn and j is the one assigned to

DRRnþ1. The central domain designated by 11 therefore cor-

responds to a cardiac dynamics ruled by the sinus node.

Asymmetry in the sinus heart rate was already investi-

gated using different measures from the RR intervals.44–46 In

the present study, we choose to use the differences DRR

between successive RR intervals; we therefore did not per-

form our analysis from the same variable. Moreover, we did

not filter the data to remove arrhythmias (such as VPCs),

contrary to what is commonly done in other studies8,47 Our

objective was thus to define an index being representative of

the asymmetry of the entire cardiac dynamics, including

arrhythmias if there are any. We defined our asymmetry

coefficient as
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a ¼ 1

4

g00

g22

þ g01

g21

þ g02

g20

þ g10

g12

� �
; (13)

where each term is the ratio between the probability of visits

of a domain corresponding to fast accelerations and its sym-

metric under an inversion symmetry (in the plane of the first-

return map on DRR). Indeed, domains containing at least

one symbol “0” (00, 01, 10) correspond to the emergence of

a fast decreasing between two consecutive RR intervals

(acceleration in the heart rate), whereas domains containing

at least one symbol “2” (12, 21, 22) correspond to the emer-

gence of a fast increasing between two consecutive RR inter-

vals (deceleration in the heart rate). Domains 02 and 20

containing at the same time the two symbols “0” and “2”, we

considered the first emergence of a “0” to characterize a fast

acceleration event.

Consequently, an a coefficient roughly equals to 1 is

representative of a balance between fast accelerations and

decelerations in the rhythm. a < 1 represents a tendency to

fast decelerations and a > 1 represents a tendency to fast

accelerations in the cardiac rhythm.

For each patient, we plotted the asymmetry coefficient a
versus the Shannon entropy Sh and found that patients are

thus grouped in different domains according to the structure

of their first-return maps. These two biomarkers thus allow

to automatically detect the structure of the first-return maps

on DRR. The structures of the first-return map do not reveal

by themselves how often they are visited or not. The proba-

bility P111111 of realization of six consecutive beats with a

limited variability (less than 6s) can be used for assessing

how often is visited the central disk and, indirectly, how fre-

quent are arrhythmias (here considered as any beat-to-beat

fluctuations exceeding 6s).

To complete our set of biomarkers, we also introduced a

characteristic time scale of the cardiac dynamics obtained as

follows. We first introduced a symbolic dynamics defined

according to the partition

rn ¼
0 if jDRRnj < svar

1 if jDRRnj � svar ;

���� (14)

where svar is a time threshold that was varied from 0 to

200 ms. Such a symbolic dynamics with Np¼ 2 symbols was

used with s¼ 10 ms in order to define some indices for

detecting low variability and decreased heart rate variabil-

ities.9,48 Instead of selecting a unique given value, we varied

the time threshold svar. From the N
Nq
p ¼ 26 ¼ 64 possible

sequences of length Nq¼ 6 constructed with Np¼ 2 symbols,

we computed the Shannon entropy for each threshold svar.

The value Tc of svar corresponding to the maximum Shannon

entropy was retained as a characteristic time scale of the car-

diac dynamics. We do not have yet a physiological meaning

to propose for such a time scale but it was retained due to its

discrimination power.

III. APPLICATION TO TRAINING DATA SETS
AND BLIND VALIDATION

A. PHYSIONET data

In order to test the discriminating power of our tech-

nique, three different groups of patients from the Physionet

database49 were selected. For each of them, a long-term

ECG signal (24 h) containing around 100 000 RR intervals

was downloaded. The first group included 15 healthy sub-

jects with NSR and no significant arrhythmias, aged 34 6 7

years (range 20 to 45). According to Eq. (8), the correspond-

ing threshold sNSR required for constructing the symbolic dy-

namics was calculated for each patient (the average value

was around 69 ms). The second group was made of 15

patients with severe CHF (NYHA class 3–4), aged 58 6 6

years (range 48 to 71). The corresponding threshold sCHF

was calculated for each patient (the average value was

around 54 ms). The third group contained 15 patients with

sustained AF (one or more episodes during at least 20 h of

the recordings), aged 66 6 12 years (range 39 to 87).

Individual age of each patient was not specified in the data-

base, so we put the same time threshold sAF for all the

patients in this group, that is, 50 ms corresponding to the

mean age according to Eq. (8).

B. Structures of the first-return maps

First, first-return maps from the DRR variable were plot-

ted for all patients from the three groups. The distributions

of the angles hn exhibit significant departures between the

three groups of patients. First-return maps of healthy subjects

are characterized by a central cloud of points whose size

depends on the considered patient. Some points can be out of

the central cloud but their repartition is rather homogeneous

as confirmed by the rather uniform angular distribution (Fig.

2(c)). The angles around p
2

and 15p
8

are slightly more often

observed. They correspond to points located in panels 12 and

21 (Fig. 1), respectively, corresponding to isolated decelera-

tions in the heart rate followed by a return to the central disk,

suggesting the influence of the parasympathetic system,

which mainly slows the pace. This provides evidence for the

hypothesis that normal subjects present fast and isolated var-

iations in the heart rate.

Patients affected by congestive heart failure are charac-

terized by a central cloud (abnormally smaller than in

healthy subjects) and four well-defined segments whose ori-

entations do not depend on the patients. Typical angular dis-

tribution for such patients shows that four segments are

FIG. 1. Partition of the first-return map in 9 panels, according to partition

(7) used to define the symbolic dynamics.
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oriented at 5p
8

, p, 3p
2

, and 15p
8

(Fig. 3). These segments corre-

spond to VPCs consisting in a premature contraction, which

is not triggered by the sinus node but by an ectopic center:

they may occur randomly. The premature beat is usually fol-

lowed by a prolonged beat that offsets the anticipation in

order to synchronize cardiac contraction with the sinus node

activity.50 The RR intervals take the following successive

values:

::: T T T ðT � dtÞ ðT þ dtÞT T :::;

where T is the mean duration of a cardiac beat and dt is the

delay by which the first beat is anticipated. The correspond-

ing DRR are thus

::: 0 0� dtþ 2dt� dt 0 :::

As schematized on Fig. 3(b), segment A corresponds to the

occurrence of the acceleration by �dt. Segment B has a

slope �2, that is, oriented at 5p
8

, and corresponds to the transi-

tion from �dt to þ2dt. Segment C corresponds to the transi-

tion from þ2dt to �dt and has a slope � 1
2
, that is, oriented at

15p
8

. Segment D corresponds to the return to the central disk.

The associated symbolic sequence is therefore

…1 1 0 2 0 1…

Four domains of the first-return map are therefore succes-

sively visited during a VPC event: panels 10, 02, 20, and 01

as confirmed by the angular distribution (Fig. 3(c)). The

structure of the first-return maps of patients with congestive

heart failure thus suggests that they are subject to VPCs. A

relation between heart failure and VPCs had been established

but the underlying mechanism remains poorly understood.51

In practice, not all VPCs are followed by a complete com-

pensatory pause and other symbolic sequences may therefore

appear. They were not taken into account in this work.

When bursts of successive VPCs occur, two additional

segments can be distinguished in the first-return map at h ¼
3p
4

and h ¼ 7p
4

, respectively. The corresponding symbolic

sequence is

::: 1 1 0 ð20Þp 1 :::;

where p is the number of successive VPCs (the sequence

“20” is repeated p times).

Patients affected by atrial fibrillation present a very

wide and dense first-return map, with a characteristic trian-

gular shape (Figs. 4(a) and 4(b)). The central disk cannot be

distinguished: the cardiac rhythm is not governed by the

sinus node. This triangular shape is highlighted by the angu-

lar distribution, which presents three main orientations

located at p
2
, p, and 7p

4
, respectively (Fig. 4(c)). Contrary to

what is observed in angular distributions of healthy subjects,

for which the angles were uniformly distributed, or in

patients with congestive heart failure, for which points with

FIG. 2. First-return map built on DRR

for a Physionet patient from the

NSR group and its corresponding sche-

matic model, built from the angular

distribution.
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specific angles were mostly distributed among sharp peaks,

large intervals of angles were visited for patients with atrial

fibrillation, evidencing the great disorder in their cardiody-

namics. Angles between p
2

and p are uniformly distributed

and shape the base of the triangle, whereas the peak located

around 7p
4

is responsible for the apex. Points along the three

medians of the triangle mostly correspond to fast isolated

decelerations in the heart rate. When a deceleration event

occurs with an elongated RR interval, the heart returns to its

normal activity by a resynchronization with the sinus node

during the following beat. In that case, RR intervals take the

successive values

::: T T T ðT þ dtÞT T T :::

The corresponding DRR are thus

::: 0 0þ dt� dt 0 0 :::

and the associated symbolic sequence is

::: 1 1 2 0 1 1 :::

Three panels of the first-return map are successively visited

during this type of arrhythmias (panels 12, 02, and 01) as

highlighted by the angular distribution. Atrial fibrillation

results from an uncoordinated action of the atrial myocardial

cells leading to rapid and irregular contractions of the atria.

Consequently, short irregular heart beats (tachycardia) fre-

quently occur in these patients. Such an acceleration of the

heart rate is balanced according to a property of the atrioven-

tricular node, which presents a decremental conduction, that

is the more frequently the node is stimulated, the slower it

conducts.52 This prevents rapid conduction to the ventricles

in the case of rapid atrial rhythms as encountered in atrial fi-

brillation. These patients suffering from atrial fibrillation are

thus subject to an interplay between very frequent fast accel-

erations and decelerations in the heart rhythm, decelerations

structuring the triangular shape of the first-return maps.

C. Results

A specific structure for the first-return maps was high-

lighted for each of the three groups of patients. These maps

can be regrouped according to their structure by using the

Shannon entropy Sh and the asymmetry coefficient a as

shown in Fig. 5. Typically, the Sh–a plot can be divided into

three panels by using the two thresholds Sc ¼ 2Snorm and

ac ¼ 1:5 as follows.

• panel NSR if Sh < Sc and a < ac;
• panel CHF if a � ac;
• panel AF if Sh � Sc and a < ac.

Each of these panels corresponds to one specific group

of patients, which can therefore be discriminated by using

FIG. 3. First-return map built on DRR

for a Physionet patient from the CHF

group and its corresponding schematic

model, built from the angular

distribution.
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these two biomarkers. CHF patients whose first-return maps

present characteristic segments due to the occurrence of

VPCs are located in the CHF-panel (left top part of Fig. 5).

First-return maps with a triangular shape correspond to the

largest Shannon entropies (right part of Fig. 5), thus reveal-

ing complex dynamics, and are associated with patients

affected by atrial fibrillation. First-return maps (mostly

appearing as a central disk) corresponding to patients with

normal sinus rhythm are in the NSR-panel (left bottom part

of the map shown in Fig. 5). It should be noted that the three

groups of patients were constructed to provide well diag-

nosed cases. In the clinical daily life, no doubt that patients

with mixed structures could occur. This will be easily

assessed by using the probability P111111.

FIG. 4. First-return map built on DRR

for a Physionet patient from the AF

group and its corresponding schematic

model, built from the angular

distribution.

FIG. 5. Map spanned by the relative

Shannon entropy Sh and the asymmetry

coefficient a. The 15 patients of each

group are reported. A logarithmic scale

is used in the ordinate axis to improve

the clarity of the map.
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The relative Shannon entropy was rather small for the

CHF group, significantly greater for healthy patients, and yet

substantially greater for the AF group than for healthy

patients (Table II). The asymmetry coefficient a was close to

1 for healthy subjects and patients with AF and significantly

greater for the CHF group thus confirming results obtained

in Refs. 16 and 41. The realization probability P111111 (using

the three-symbol dynamics) was large for patients with CHF,

significantly smaller in healthy patients, and again signifi-

cantly smaller for the AF group than for the healthy subjects.

The values of the characteristic time scale Tc of the cardiac

dynamics were significantly different between the three

groups: this characteristics time scale was small for patients

with CHF, greater for healthy subjects and yet greater for

patients with AF. This result is illustrated by the evolution of

the Shannon entropy versus the time threshold svar used to

define the two-symbol symbolic dynamics (Fig. 6).

Since associated with a small Shannon entropy and a

small characteristic time scale, the cardiac dynamics of

patients affected by congestive heart failure is characterized

by a decreased sinus variability. These patients have the larg-

est percentage of sequence “111111,” a feature that reveals a

poor adaptation capacity of the heart. This is consistent with

the small central disk observed in the first-return maps (see

Fig. 3, for instance). A decreased cardiac variability in these

patients can be indicative of an increased risk of sudden car-

diac death, as shown by Ponikowski et al.53 CHF is also

associated with large beat-to-beat fluctuations that we identi-

fied as being VPCs from the typical structure in four seg-

ments of the first-return map. Their presence is associated

with an increased asymmetry coefficient a, since VPCs

induce an imbalance between accelerations and decelerations

in the cardiac rhythm.

Patients affected by atrial fibrillation present the largest

Shannon entropy and a large characteristic time scale. It

reveals a wide complexity of the heart rhythm, in agreement

with the large domain visited by the first-return maps. The

percentage of sequence “111111” is very small and the

asymmetry coefficient a is close to 1: this is indicative of

many large beat-to-beat fluctuations in the heart rate, with

accelerations and decelerations.

Subjects with normal sinus rhythm present an intermedi-

ate Shannon entropy (around 0.3) and an asymmetry coeffi-

cient a close to 1. Indeed, a healthy heart has a good

adaptation capacity leading to small and isolated beat-to-

beat variations in the heart rate. These subjects own a moder-

ate cardiac variability as revealed by the characteristic time

scale of the cardiac dynamics (Fig. 6(a)).

D. Blind validation

To test the prospective discrimination power of our tech-

nique, and since the criteria used to classify the patients in

three groups were determined from a retrospective study, we

TABLE II. Mean and standard deviation of the relative Shannon entropy Sh,

of the realization probability of sequence “111111” encoded with the

3-symbol dynamics, of the asymmetry coefficient a, and of the characteristic

time scale Tc computed from the 2-symbol dynamics, for each group of the

Physionet patients. p-values between each group are also reported

(Wilcoxon rank-sum test).

Patients Sh p-value

NSRi 0.294 6 0.166 �p< 0.01 �p< 0.01CHFi 0.116 6 0.071

AFi 0.893 6 0.035
�p< 0.01

Patients �a p-value

NSRi 0.951 6 0.275 �p< 0.01 �p¼ 0.52 n.s.CHFi 3.472 6 2.770

AFi 1.068 6 0.106
�p< 0.01

Patients 111111 p-value

NSRi 69.56 6 17.36% �p< 0.01 �p< 0.01CHFi 87.99 6 8.03%

AFi 1.52 6 4.95%
�p< 0.01

Patients Tc p-value

NSRi 17.07 6 5.95 ms �p< 0.01 �p< 0.01CHFi 5.87 6 2.13 ms

AFi 115.07 6 28.27 ms
�p< 0.01

FIG. 6. Evolution of the relative Shannon entropy computed from the

2-symbol dynamics versus the time threshold svar for three patients. The

characteristic time scale Tc corresponds to the time threshold at which

the entropy is the largest.
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performed a blind validation. We therefore selected 15 addi-

tional patients from the Physionet database, 5 corresponding

to normal sinus rhythm, 5 to congestive heart failure, and 5

to atrial fibrillation. We then randomized them, erasing the

knowledge about their actual status. We used our technique

to classify them. Results are reported Table III with the crite-

ria retained for defining the three groups.

According to our criteria based on a threshold value for

the Shannon entropy (Sc ¼ 0:66) and for the asymmetry

coefficient (ac ¼ 1:5), 14 patients were correctly classified

(accuracy ¼ 93:3%, sensitivity ¼ 90%, and specificity

¼ 100%) when only these two biomarkers are used.

Nevertheless, patient 9 has an asymmetry coefficients equal

to 1.44, that is, to a value very close to the threshold ac. A

further investigation would be recommended in such a case.

If the characteristic time scale Tc is considered, it is found

that patient 9 has a time scale (8 ms) equal to half the time

scale obtained for the patients with normal sinus rhythm

(16 ms) and equal to Tc found in patients with congestive

heart failure (8 ms). The probability P111111 cannot discrimi-

nate these two groups. Moreover, the first-return map

(Fig. 7) clearly presents the four segments characteristic of

patients with congestive heart failure. Patient 9 is therefore

characterized by one biomarker very close to the threshold

value but a quick additional analysis allows to easily provide

the right diagnostic.

IV. CONCLUSION

By investigating three groups of adults with clearly

identified status as reported in the Physionet database, we

showed that each group was characterized by a first-return

map built from the DRR with a specific structure. First-

return maps built on the DRR recorded in adults with normal

sinus variability, atrial fibrillation, and congestive heart fail-

ure presented a small central cloud, a quite extended triangu-

lar shape, and oriented segments, respectively. We

investigated long duration time series (recorded for few

hours) and focused our attention on the global dynamics

rather than on short duration episodes of arrhythmias. Our

two biomarkers, namely, a Shannon entropy for quantifying

the complexity of the dynamics (based on a symbolic dy-

namics with an age-dependent partition) and an asymmetry

coefficient for quantifying the balance between fast accelera-

tions and fast decelerations in the rhythm, allowed us to

automatically group the first-return maps according to their

structure, that is, to discriminate these three groups of

patients. We here proposed two threshold values for these

two biomarkers to define domains in the plot spanned by the

Shannon entropy and the asymmetry coefficient correspond-

ing to normal sinus rhythm, congestive heart failure, and

atrial fibrillation, respectively. These threshold values were

found reliable for screening patients with very well defined

cardiac profiles. A validation was then performed with addi-

tional patients who were not used in the retrospective analy-

sis for determining the threshold values. For a more refined

validation, this first analysis should be completed by a clini-

cal protocol with diagnosis provided by physicians.
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