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Synchronization is a very generic process commonly observed in a large variety of dynamical

systems which, however, has been rarely addressed in systems with low dissipation. Using the

R€ossler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly,

and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch

between two coupled such systems does not affect the synchronizability and the underlying struc-

ture of the joint attractor in the same way. By computing the Shannon entropy associated with the

corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic

oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative

systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having

an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a

more complex behavior with higher values of the Shannon entropy. In comparison, conservative

dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified

periodic ones. Published by AIP Publishing. https://doi.org/10.1063/1.5005840

Weakly dissipative systems, typically found in celestial

mechanics, fluid mechanics, meteorology, mechanics,

ecology, etc., have solutions that visit a non-zero volume

of the state space in contrast with those being strongly

dissipative. As a consequence, the characterization of

their chaotic attractor is much more complicated. When

synchronization is considered, it is of great interest to

consider if strongly or weakly dissipative systems behave

similarly or not. Here, we compared, by using the

Shannon entropy, the way nonidentical systems present-

ing different dissipation rates organize into a collective

dynamics and found that low dissipation favors an

increase of the Shannon entropy of the interacting sys-

tems while high dissipation gives rise to a dynamics

whose complexity is in between of the coupled ones.

I. INTRODUCTION

The analysis of the chaotic behavior produced by a

dynamical system can be difficult to perform in the context

of a weak energy dissipation scenario. In such a case, there

is no rapid relaxation of the trajectories to the central mani-

fold and the attractor visits a significant volume of the state

space. Consequently, the chaotic attractor produced by a

weakly dissipative system features a “thick” Poincar�e sec-

tion, contrary to what is observed when there is strong dissi-

pation for which the thickness of such a section can be

neglected, as well exemplified by the R€ossler attractor.1 In

this latter case, attractors are commonly characterized by a

branched manifold (a template) revealing their most relevant

topological properties.2–4 For weakly dissipative systems

instead, uncovering a branched manifold from the data is not

an easy task and an analysis based on symbolic dynamics

can be astonishingly cumbersome due to the difficulty to

define a good partition of the attractor.5 Since chaotic attrac-

tors are structured around a population of unstable periodic

orbits,6,7 its extraction is a necessary step for their characteri-

zation. While it is straightforward to accomplish such a task

for strongly dissipative systems using closed return maps,8

unveiling the structure of chaotic attractors produced by

weakly dissipative systems remains a rather challenging

issue to achieve.

In spite of the interesting paradigm they offer in various

fields,9–12 the study of how two weakly dissipative systems

synchronize seems to be an elusive topic as confirmed, to the

best of our knowledge, by the lack of clear results in the lit-

erature. The case of synchronizing conservative systems has

also been rarely investigated.13–15 The reason behind such a

reduced amount of works devoted to weakly dissipative sys-

tems is the coexistence of many attractors in the state

space16,17 and the difficulty to characterize them as previ-

ously discussed. We thus investigate the synchronizability

of systems having low dissipation rate and address how it

differs from the very well-known behavior exhibited by

strongly dissipative ones. The case of conservative systems

will be also discussed.

The subsequent part of this paper is organized as fol-

lows. Section II is devoted to the characterization of the

three systems considered: (i) the strongly dissipative

R€ossler system, (ii) the weakly dissipative Lorenz 84 sys-

tem, and (iii) the conservative Sprott A system. Section III

addresses how the resulting collective dynamics is affected

by a parameter or frequency mismatch between two cou-

pled oscillators. Section IV gives some conclusions to the

paper.
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II. DYNAMICS CHARACTERIZATION

Commonly, in order to characterize chaotic attractors

produced by strongly dissipative systems, a first-return map

is preferred over a Poincar�e section because its structure is

very sensitive to the population of unstable periodic

orbits.18,19 However, in the case of toroidal and/or weakly

dissipative dynamics, the structure of the thick Poincar�e sec-

tion prevents the computation of a non-self-intersecting first-

return map. These self-intersections are the source of the dif-

ficulties encountered for describing the structure of these

types of attractors. In fact, periodic orbits cannot be easily

identified and it is rather challenging to propose a branched

manifold describing the main topological properties of the

chaotic attractor (see Ref. 20 for a first attempt to character-

ize the topology of a weakly dissipative dynamics). In the

following, first-return maps to a Poincar�e section will be

used to unfold the dynamics underlying strongly dissipative

systems, while Poincar�e sections will do for the weakly dissi-

pative and conservative systems. In addition, we will refer to

a period-p limit cycle, when the trajectory crosses p-times

the Poincar�e section before repeating itself.

Since an accurate topological description of a weakly

dissipative dynamics is difficult to carry out, we opted

instead to use the Shannon entropy computed from recur-

rence plots.21,22 This measure increases with the develop-

ment of the population of unstable periodic orbits and is

more reliable when computed from a Poincar�e section or a

first-return map than from a continuous time series.21 Let us

consider the discrete time series fuigN
i¼1, where the N points

ui come either from a Poincar�e section ui ¼ ðxi; yiÞ or a first-

return map ui ¼ ðyi; yiþ1Þ. Two points ui and uj are consid-

ered as being recurrent if

jjui � ujjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xið Þ2 þ yj � yið Þ2

q
< �; (1)

with

� ¼ 1

10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmax � Xminð Þ2 þ Ymax � Yminð Þ2

q
; (2)

where Xmin;max and Ymin;max values correspond to the largest

domain visited in the state space of a given system. By using

the condition given by Eq. (1), we construct the so-called

recurrence plot Rij as an N�N square matrix

Rij ¼ h �� jjui � ujjj
� �

; (3)

where hðuiÞ is the Heaviside function. According to Refs. 21

and 23, the Shannon entropy is defined as

Sh ¼ �
XM

n¼1

Pn log ðPnÞ ; (4)

where M is the maximum length among all the segments par-

allel to the main diagonal of Rij with non-recurrent points,

and Pn is the number of segments with n non-recurrent points

divided by the total number of recurrent points in the consid-

ered recurrence plot.23

A. The strongly dissipative R€ossler system

We consider the R€ossler system1 as a model of a

strongly dissipative system

_x ¼ x �y� z½ �
_y ¼ x xþ ay½ �
_z ¼ x bþ zðx� cÞ½ �;

8><
>: (5)

which produces a chaotic attractor as the one shown in

Fig. 1(a). A suitable Poincar�e section is defined as

Pros � ðyn; znÞ 2 R2 j xn ¼ xp; _xn > 0
n o

; (6)

where xp ¼ c�
ffiffiffiffiffiffiffiffiffiffiffi
c2�4ab
p

2
is the x-value of the inner singular point

of the R€ossler system. As previously discussed, chaotic attrac-

tors produced by strongly dissipative systems are better char-

acterized by a first-return map to a Poincar�e section than by a

Poincar�e section. While the Poincar�e section plotted in Fig.

1(b) looks like a simple arc from which no useful information

can be easily extracted, the first-return map usually exhibits

monotonic branches separated by critical points—extrema—

as shown in Figs. 2(b)–2(d). A first-return map with k critical

points is said to be a k-modal map,18,19 Fig. 2(b) being an

example of a three-modal map with four branches (labelled

from 0 to 3 next to each branch) and three critical points.

(a) (b)

FIG. 1. Chaotic attractor produced by

the R€ossler system. (a) Chaotic attractor.

(b) Poincar�e section. Parameter values:

a¼ 0.520, b¼ 2, c¼ 4, and x ¼ 5.
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The corresponding Jacobian matrix of the system (5) is

J ¼ x
0 �1 �1

1 þa 0

z 0 x� c

2
4

3
5 : (7)

The time averaged trace Tr ¼ xða�cþ xÞ38 accounts for the

dissipation rate and it ranges between –13.5 and –15.9 in the

interval of inspected a values, a ¼ ½0:395; 0:520�, with a

mean value of �15:061:0. The dissipation is, therefore, not

significantly affected by the change in the parameter a used

in this study.

Parameter x is introduced to renormalize the time while

leaving unchanged the bifurcation diagram versus parameter

a. For a¼ 0.520, the dynamics is non-phase-coherent as

shown by the distribution of the oscillation periods whose

mean value is 1.54 6 0.27 s (Fig. 3). Note that the non-phase-

coherence is here due to the presence of two rather well-

defined peaks. When parameter a is decreased, the first-return

map becomes far less developed [Figs. 2(c) and 2(d)] and the

dynamics becomes phase-coherent when only branches 0 and

1 are observed in the first-return map.19 The values of the

Shannon entropy are also reported, showing that the more

developed the dynamics is, the greater the entropy is.

B. The weakly dissipative Lorenz 84 system

In 1984, Edward Lorenz proposed the simple model

_x ¼ �y2 � z2 � axþ aF

_y ¼ xy� bxz� yþ G

_z ¼ bxyþ xz� z;

8><
>: (8)

for the global atmospheric circulation.24 Typical parameter

values are a¼ 0.28, b¼ 4, F¼ 8, and G¼ 1, which produce

the chaotic attractor shown in Fig. 4. These values will be

used throughout this work unless otherwise specified. The

structure of this attractor is rather complicated due to its tor-

o€ıdal structure as clearly shown in the y–z plane projection.

The trace of the Jacobian matrix

J ¼
�a �2y �2z

y� bz x� 1 �bx
byþ z bx x� 1

2
4

3
5 (9)

is not constant and equal to

TrðJ Þ ¼ �aþ 2ðx� 1Þ: (10)

Its mean value is equal to �0:2560:08 in the interval a
¼ ½0:235; 0:28�—60 times smaller than that of the R€ossler

system—confirming the low dissipation rate of the Lorenz

84 system with respect to the R€ossler in the parameter space

(a)

(b) (c)

(d)

FIG. 2. Bifurcation diagram (a) and first-return maps to a Poincar�e section

[(b) a¼ 0.520, Sh¼ 2.50, (c) a¼ 0.492, Sh¼ 2.42 and (d) a¼ 0.395,

Sh¼ 1.20] of three different chaotic attractors produced by the R€ossler sys-

tem. Each branch in the first-return maps is labelled with an integer. Other

parameter values: b¼ 2, c¼ 4, and x ¼ 5:0.

FIG. 3. Distribution of the oscillation periods for a trajectory within the

attractor produced by the R€ossler system. Mean oscillation period: �s ¼
1:5460:27 s. Parameter values: a¼ 0.520, b¼ 2, c¼ 4, and x ¼ 5:0.

FIG. 4. Chaotic attractor produced by the Lorenz 84 system (8). The y-z
plane projection evidences the main rotation driving the dynamics of the

Lorenz 84 system. The Poincar�e plane is drawn as a red line. Parameter val-

ues are a¼ 0.28, b¼ 4, F¼ 8, and G¼ 1.
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explored. This is further evidenced by the thickness of the

Poincar�e section

PLor � ðxn; ynÞ 2 R2 j zn ¼ 0; _zn < 0
� �

; (11)

which reveals a rich layered structure as exemplified in Figs.

5(b) and 5(c) for two different a-values. Two aspects indicate

that these two regimes have distinct properties: (i) the visited

volume V of the state space39 for a¼ 0.28 [Fig. 5(b)] is about

the double of what it is for a¼ 0.235 [Fig. 5(c)] and (ii) the

layered structure of the two Poincar�e sections are qualita-

tively different [compare the middle top of Fig. 5(b) with the

top of Fig. 5(c)]. This change is quantified by the corre-

sponding Shannon entropy values Sh ¼ 1:52 and Sh ¼ 1:21,

respectively. Therefore, the two populations of unstable peri-

odic orbits are not alike, and the chaotic attractor in Fig. 5(b)

is more developed than the one shown in Fig. 5(c).

The bifurcation diagram versus the parameter a [Fig.

5(a)] reveals a very rich collection of bifurcations.25–28 The

co-existence of at least two attractors is shown by computing

the bifurcation diagram by increasing (black) and decreasing

(red) the parameter a. For instance, when a is increased, a

period-2 limit cycle [whose upper segment is shown in the

blowup of Fig. 6(a)] is destabilized through a Hopf bifurca-

tion at a � 0:2416 leading to a quasi-periodic regime [Fig.

6(c)] with its characteristic annular Poincar�e section (not

shown). The trajectory thus settles down onto an invariant

torus. This quasi-periodic regime is further destabilized

through a boundary crisis with a period-8 unstable orbit.

Once the torus collides with the period-8 orbit, the trajectory

slowly approaches the domain where the invariant torus was

before the crisis, and then spirals very slowly toward the

now stable period-8 orbit. All these attractors (from the

period-2 limit cycle to the quasi-periodic regime becoming a

period-8 limit cycle) coexist in the state space with a period-

5 limit cycle [Fig. 6(c)]. A second example of bifurcation

[Fig. 5(a), red] is a period-doubling cascade when a is

decreased from 0.274 [Fig. 6(b)]. It starts with a period-7

limit cycle [Fig. 6(d), red] coexisting with a chaotic attractor

[Fig. 6(d), black].

The state space of the Lorenz 84 system is definitely not

as simple as commonly observed in strongly dissipative

ones. Nevertheless, as shown in Figs. 4, 6(c), and 6(d) or by

the bifurcation diagram in Fig. 5(a), the visited domain of

the state space is bounded and it is not significantly affected

by the multistability.

The chaotic attractor produced by the Lorenz 84 system

is non-phase-coherent as shown by the probability distribu-

tion PðsÞ of the oscillation periods s (Fig. 7). The mean

period is �s ¼ 1:5460:77 s as for the R€ossler system (Fig. 3)

with a peak at a typical period st ¼ 0:85 s and oscillation

periods extending four times longer. The non-phase-coher-

ence is thus due to a large flat distribution and not to two

rather well-defined oscillation periods as in the R€ossler sys-

tem. The time scales of the two systems are chosen to be of

(a)

(b) (c)

FIG. 5. Bifurcation diagram of the Lorenz 84 system (8) and Poincar�e sec-

tions of two of the chaotic attractors it produces. The bifurcation diagram is

computed by increasing (black) and decreasing (red) the a-value. In spite of

the apparent similarities between the two sections, the volume visited in

a¼ 0.28, Sh¼ 1.52 (b) (V0:280 ¼ 13:1%) is nearly the double in a¼ 0.235,

Sh¼ 1.21 (c) (V0:235 ¼ 6:6%). The Poincar�e plane used to compute the

Poincar�e section is given by Eq. (11) and drawn as a red line in Fig. 4. The

rest of parameter values as in Fig. 4.

(a) (b)

(c) (d)

FIG. 6. (a) and (b) Blowups of the bifurcation diagram of the Lorenz 84 sys-

tem shown in Fig. 5(a) to evidence its rich structure. (a) A Hopf bifurcation

of a period-2 limit cycle leads to (c) a quasi-periodic behavior (black) coex-

isting with a period-5 limit cycle (red) in the state space at a¼ 0.2417. (b) A

period-doubling (PD) cascade issued (a decreasing) from a period-7 limit

cycle leads to (d) a chaotic attractor (red) coexisting with a more developed

one (black) for a¼ 0.273.

FIG. 7. Distribution of the oscillation periods s described by a trajectory

within the attractor produced by the Lorenz 84 system. �s ¼ 1:5460:77 s.

Parameter values as in Fig. 4.
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the same order because this is relevant for comparing their

dissipation rates (which accounts for the volume contraction

per unit of time). Indeed, the dissipation rate is associated

with the strength of the squeezing mechanism occurring after

the stretching-and-folding mechanism responsible for the

chaotic dynamics.2 The strength of the squeezing mechanism

in chaotic attractors affects directly the Poincar�e section and

first-return map thickness.

C. The conservative Sprott A system

Among the collection of simple chaotic systems found

by Sprott,29 the Sprott A system

_x ¼ xy
_y ¼ x �xþ yzð Þ
_z ¼ x a� y2

� �
8<
: (12)

has the particularity of being conservative as evidenced by

its Jacobian matrix

J ¼ x
0 1 0

�1 z y
0 �2y 0

2
4

3
5; (13)

whose trace is such that

Tr ¼ lim
T!1

x
ðT

t¼0

z dt ¼ 0 : (14)

Therefore, there is no longer an attractor and the nature of

the solution strongly depends on the initial conditions as

shown by the Poincar�e section

PSpr � xn; ynð Þ 2 R2 j zn ¼ 0
n o

; (15)

depicted in Figs. 8(b) and 8(c).

For a¼ 2.0 and x ¼ 3:41, a chaotic sea is observed

(black dots in Fig. 8), for instance, from the initial conditions

�����
x0 ¼ 2:5x
y0 ¼ 3:1x
z0 ¼ 0x :

(16)

This so-called chaotic sea surrounds quasi-periodic islands

among which the central one is structured around a symmet-

ric period-4 limit cycle (red trajectory in Fig. 9) for all the

used a-values. We adjusted x ¼ 3:41 to have a mean oscilla-

tion period nearly equal to those observed for the two previ-

ous systems. Choosing the initial conditions as in (16) allows

to leave the dynamics invariant under any change in x and

to ensure that we are still in the chaotic sea. The Sprott A

system combines many different coexisting solutions in the

state space with a distribution of the oscillation periods char-

acterized by two peaks (see Fig. 10). The bifurcation dia-

gram [Fig. 8(a)] versus parameter a (the initial conditions

being the same for each a-value) shows how the chaotic sea

evolves: its size increases when a is increased.

We have thus retained three systems whose dissipation

rates can be significantly different. A related property is that

the R€ossler system rarely exhibits multistability, while the

two other produce solutions that depend on the initial condi-

tions but, as we will see, such a dependency is not relevant

to our results.

(a)

(b) (c)

FIG. 8. (a) Bifurcation diagram of the Sprott A system versus parameter a,

and (b) and (c) Poincar�e sections (z¼ 0) of the solutions produced for two

different values of parameter a [(b) a¼ 1.6, Sh ¼ 1:97 and (c) a¼ 2.0,

Sh ¼ 2:04]. Other parameter values: x ¼ 3:41. See the main text for the val-

ues of the initial conditions used for each a-value.

FIG. 9. Co-existing solutions produced by the Sprott system. The initial con-

ditions for the period-4 limit cycle are chosen in the center of one of the four

(blue) islands shown in Fig. 8(c). Parameter values as in Fig. 8(c).

FIG. 10. Distribution of the oscillation periods s for a trajectory within the

attractor produced by the Sprott A system. Mean oscillation period: �s ¼
1:5560:46 s. Parameter values as in Fig. 8.
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III. SYNCHRONIZABILITY OF TWO COUPLED
SYSTEMS

Let us consider the equation

_x1;2 ¼ f ðx1;2Þ � q hðx1;2Þ � hðx2;1Þ
� 	

; (17)

governing the time evolution of two coupled oscillators,

where f ðxiÞ stands for the vector flow and hðxiÞ and q are

the coupling function and global coupling parameter,

respectively.30,31

According to the master stability function approach for

assessing the synchronizability of identical systems,32 com-

plete synchronization of Lorenz 84 systems is realized when

coupled through variable z, that is, h ¼ ð0; 0; zÞ in Eq. (17). A

similar situation is obtained with R€ossler systems when they

are coupled through the variable x and the Sprott A systems via

variable y. In these three cases, the synchronous state x1 ¼ x2

is stable within an interval of the coupling parameter.33,34

When the coupled systems are nonidentical, the com-

plete synchronization is no longer an invariant manifold of

the dynamics and the stability of the almost synchronous

solution is reduced.35,36 In order to check how a parameter

or frequency mismatch affects the synchronization and the

resulting dynamics, we introduced a mismatch in the a2

parameter of the second oscillator while keeping fixed the

a¼ a1 value of the first one. A standard marker for the qual-

ity of the synchronization is the normalized average synchro-

nization error

e ¼ lim
T!1

1

T

ðT

0

1

D
kx2ðtÞ � x1ðtÞkdt; (18)

where kk stands for the Euclidean norm and D ¼
maxðkx2ðtÞ � x1ðtÞkÞ is the diameter of the attractor.

Together with the synchronization error, we will use the

Shannon entropy to characterize the resulting dynamics from

the interaction of the two oscillators as a function of the dis-

sipation rate.

A. Mismatch in one parameter value

We computed the relative Shannon entropy ~Sh and the

normalized synchronization error e, while varying the cou-

pling strength q and the ratio Da
a1
¼ 1� a2

a1
for the three sys-

tems. The Shannon entropy ~Sh is normalized to the reference

value of the Shannon entropy Sh of the first oscillator when it

is uncoupled. In Fig. 11, we report ~Sh (left column) and the

normalized synchronization error e (right column) for the

three systems. For the strongly dissipative case, the Shannon

entropy tends to decrease when q increases [Fig. 11(a)]. On

the other hand, there is a threshold value (qx � 4) beyond

which the trajectory is ejected to infinity. In this “bifurcation”

diagram, when 1:5 < qx < 4, there are some regions where

the Shannon entropy and the synchronization are nearly zero,

suggesting the emergence of a common limit cycle. The

parameter mismatch, therefore, plays the role of a bifurcation

parameter. For instance, when qx ¼ 2:5 and Da
a1
¼ 5:4%

(a1 ¼ 0:520 and a2 ¼ 0:492), the structure of the attractor is

already modified [Fig. 12(a)] and the corresponding first-

return map is comparable with the one that an isolated R€ossler

would have for an intermediate value of the a parameter [in

between the maps of Figs. 2(b) and 2(c)]. Indeed, the map of

the collective dynamics has four monotonic branches but

branch 3 is shortened in comparison with branch 3 that the

first oscillator displays when uncoupled [Fig. 2(b)] and is

more developed than in the map associated with the second

oscillator [Fig. 2(c)]. On the other hand, when increasing the

mismatch to Da
a1
¼ 24% (a1 ¼ 0:520 and a2 ¼ 0:395), the

topology of the attractor is still apparently similar to the struc-

ture of a common R€ossler funnel attractor [Fig. 12(b)] but the

first-return map presents some features that are no longer rec-

ognizable like the additional branch “1” (perhaps it is possible

to find parameter values for reproducing it with a single

R€ossler system, but this would require a global modelling

technique which is not the purpose of this paper). In a first

approximation, this first-return map can still be considered as

an intermediate case between the maps produced by the two

oscillators when isolated [Figs. 2(b) and 2(d)]. Compared with

the map for a1 ¼ 0:520, branch 3 is removed and branch 2 is

only slightly developed; compared with the map for

a2 ¼ 0:395, branch 0 is more developed and branch 2 is

already present. This is confirmed by the relative Shannon

entropies, ~S2 ¼ 0:48 < ~S1�2 ¼ 0:85 < ~S1 ¼ 1:00, where
~S1; ~S2, and ~S1�2 are the relative entropies of the first, the sec-

ond, and the two coupled R€ossler systems, respectively.

(a)

(b)

(c)

FIG. 11. Color maps of the relative Shannon entropy ~Sh (left column) and

normalized synchronization error e (right column) versus the coupling

parameter and the relative mismatch Da=a1 between oscillators. Parameter

values are (a) R€ossler systems, a1 ¼ 0:520; x1 ¼ 5:0, b¼ 2 and c¼ 4; (b)

Lorenz 84 systems, a1 ¼ 0:28; x1 ¼ 1, b¼ 4, F¼ 8, and G¼ 1; and (c)

Sprott A systems, a1 ¼ 2:0, and x1 ¼ 3:41.
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For the weakly dissipative case, there is a kind of

Arnold tongue (green domain in Fig. 11(b)) extending over

the region 2:0 < qz < 10, up to Da
a1
� 0:1 for qz � 3:0. In this

region, the two oscillators are almost synchronous and the

observed dynamics is very close to the reference one

(~Sh � 1). Periodic windows are also present (~Sh � 0, blue

strips) like the period-4 orbit shown in Fig. 13(a) for

Da=a1 ¼ 0:11 and qz ¼ 6:5. On the other hand, yellow

regions (~Sh > 1) correspond to collective chaotic dynamics

more developed than the isolated ones, as shown in Figs.

13(b) and 13(c). For instance, taking the isoline qz ¼ 6:5 and

moving to increasing values of the parameter mismatch, the

resulting attractor still resembles the one produced by the

reference oscillator, while the parameter mismatch is within

the Arnold tongue [Fig. 13(b)]. For larger values of the

parameter mismatch, the structure of the attractor is certainly

different [Fig. 13(c)]: the layered structure of its Poincar�e
section is clearly blurred—as if it was noise contaminated—

by the lack of synchronization and the Shannon entropy Sh is

increased by 50%.

We argue that the low dissipation rate is the cause giv-

ing rise to a collective dynamics with a Shannon entropy

greater than that observed separately. Such behavior is not

observed in the strong dissipation regime, despite in the two

cases, the visited domains by the attractors are of the same

order. Hence, the multistability exhibited by the weakly dis-

sipative systems is not explaining the way the synchroniza-

tion error is processed but by the dissipation rate.

Finally, the conservative regime displays a much sim-

pler case scenario. In most of the parameter space, the two

coupled systems are synchronous and the collective dynam-

ics is settled either in the chaotic sea for small Da=a1

[~Sh � 1, green area in left panel of Fig. 11(c)] or perform-

ing a period-4 orbit for large Da=a1 [~Sh � 0:3, blue area in

left panel of Fig. 11(c)]. This means that the two coupled

Sprott A oscillators cannot develop any other dynamics

than those performed by the isolated systems and the

selected one depends on the coupling and parameter mis-

match. The period-4 orbit is actually a limit cycle, since

there is a transient regime during which the synchronization

error vanishes. Note that this limit cycle is clearly associ-

ated with the four islands observed in the two Poincar�e sec-

tions—shown in Figs. 8(b) and 8(c)—clearly structuring the

chaotic sea (also shown in Fig. 9, black). Contrary to what

is observed in the presence of dissipation, the conservative

systems (i) are unable to remain chaotic when the parame-

ter mismatch is large (Dx
x1
> 0:25) and (ii) are always

synchronous.

(a)

(b)

(c)

FIG. 13. Chaotic attractors produced by two nonidentical Lorenz 84 systems

coupled through the variable z (qz ¼ 6:5) for three different values [(a)

a2 ¼ 0:250, e ¼ 0.02, and ~Sh ¼ 0:00; (b) a2 ¼ 0:27, e ¼ 0.02, and
~Sh ¼ 0:99; (c) a2 ¼ 0:225, e ¼ 0.07, and ~Sh ¼ 1:49] of the parameter a2

(mismatches Da=a1 ¼ 0:11, 0.036, and 0.2). In all cases, a1 ¼ 0:28, and the

rest of parameters as in Fig. 11(b).

(a)

(b)

FIG. 12. Chaotic attractors produced by two R€ossler systems coupled

through the x variable (qx ¼ 2:5) for a pair of mismatches in their a-values,

Da=a1 ¼ 0:054 and 0.24, respectively [(a) a2 ¼ 0:492, e¼ 0.02, and ~Sh ¼ 1

and (b) a2 ¼ 0:395, e¼ 0.06, and ~Sh ¼ 0:85]. In both cases, a1 ¼ 0:520, and

the rest of parameters as in Fig. 11(a).
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B. Mismatch in the main frequency

We will focus our attention only on the new features spe-

cially arising due to a frequency mismatch. Indeed, quite simi-

lar results are obtained when the mismatch Da
a1

is replaced by a

frequency mismatch Dx
x1
¼ x2

x1
� 1 (Fig. 14), indicating that the

frequency mismatch also plays the role of a bifurcation

parameter. This means that the features we observe are mostly

due to the error between the two oscillators and how it is

released and not due to the nature of the dynamics producing

that error. This is supported by the fact that the dynamics is

topologically invariant under a frequency mismatch.

For the R€ossler system, the collective dynamics is

strongly reduced for Dx
x1
> 0:1 as confirmed by the small rela-

tive Shannon entropy ~Sh [Fig. 14(a)]. In particular, for
Dx
x1
� 0:3, the attractor dynamics [see Fig. 15(a)] with such a

first-return map cannot be retrieved from a single R€ossler

system. The double structure organized around the diagonal

results from a banded attractor (the trajectory evolves on a

band which crosses twice the Poincar�e section before return-

ing to itself) and the collective dynamics cannot be properly

described in a three-dimensional space but actually in a six-

dimensional space.

As for the weakly dissipative systems, a color map with

also a very similar structure as the one observed in Fig. 11(b)

has been obtained for Dx
x1
< 0:1 [note, for instance, the blue

strip observed in the upper part of Fig. 14(b)]. For Dx
x1
> 0:1,

the collective dynamics is nearly always associated with a

relative Shannon entropy greater than 1.5. As an illustrative

example, the resulting attractor for Dx
x1
¼ 0:3 is shown in Fig.

14(b). It has a shape roughly similar to the one discussed in

Fig. 13, with its Poincar�e section no longer presenting a clear

structure and not being distinguishable from a strongly

noise-contaminated one. The synchronization error is not

dissipated, and the resulting dynamics cannot be viewed as

produced by a single isolated oscillator.

In the case of the Sprott A system, we recover the two

types of dynamics we observed with a parameter mismatch,

either a chaotic sea rather similar to the original one for
Dx
x1

�0:01 or the period-4 orbit otherwise. There is a tiny

region for small coupling values where it is possible to have

a chaotic trajectory even for large frequency mismatch.

Therefore, for the conservative case, it is difficult to get a

chaotic dynamics when the systems are no longer identical.

The dependence on the initial conditions was very weak

and does not affect the results in a significant way for any of

the three types of systems. This is not surprising at all for the

R€ossler system because multistability is quite rare observed

in the bifurcation diagram. On the contrary, the weakly dissi-

pative Lorenz 84 system typically exhibits multistability.

Nevertheless, such a lack of dependence to initial conditions

may be explained by the fact that the different displayed

attractors are always in the same domain of the state space.

In the case of the conservative system, as long as the initial

conditions are chosen within the chaotic sea, we obtained

similar results.

(a)

(b)

(c)

FIG. 14. Color maps of the relative Shannon entropy ~Sh (left column) and

normalized synchronization error e (right column) versus the coupling

parameter and the frequency mismatch Dx=x1. Parameter values are (a)

R€ossler systems, a1 ¼ a2 ¼ 0:520; x1 ¼ 5:0, and the rest of parameters as

in Fig. 11(a); (b) Lorenz 84 systems, a1 ¼ a2 ¼ 0:28, x1 ¼ 1, and the rest

of parameters as in Fig. 11(b); (c) Sprott A systems, a1 ¼ a2 ¼ 2:0 and

x1 ¼ 3:41.

(a)

(b)

FIG. 15. Chaotic attractors (left column) produced by two coupled (a)

R€ossler oscillators: x2 ¼ 6:5, e¼ 0.14, and Sh ¼ 0:41 (with its first-return

map to the right) and (b) Lorenz 84: x2 ¼ 1:3, e¼ 0.10, and Sh ¼ 2:20 (with

its Poincar�e section to the right) with a relative frequency mismatch

Dx=x1 ¼ 0:3. Coupling parameter values are qx ¼ 2:5 in (a) and qz ¼ 6:5
in (b), respectively. Other parameter values are same as in Fig. 14.
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In order to condense in a single picture the different

behaviors observed as a function of the dissipation rate, we

report in Fig. 16 the relative Shannon entropy ~Sh as a func-

tion of the normalized synchronization error e, where each

dot corresponds to a given pair of coupling strength and fre-

quency mismatch values. In the three considered scenarios,

strong, weak, and zero dissipation, points with ~Sh ’ 1 occur-

ring for small and large values of the synchronization error,

correspond to situations of small frequency mismatch and

small coupling strength, respectively. Outside this region, we

observe three completely different trends. For the strongly

dissipative system, the ~Sh almost always remains below the

reference value (~Sh < 1) independently of the synchroniza-

tion error. This implies that a strong dissipation induces a

reduction of the complexity of the collective dynamics: as

we observed with a parameter mismatch the resulting

dynamics is either intermediate between the dynamics of the

two isolated coupled oscillators or completely different from

the original dynamics but with an attractor structured around

a small population of periodic orbits, as indicated by the

small relative Shannon entropy. For the weak dissipative sys-

tems, the synchronization error between the two coupled sys-

tems cannot be released. Since the trajectory does not

converge quickly on the manifold of the original attractor,

the resulting dynamics is more developed than the original

one (~Sh > 1). For conservative systems, the relative Shannon

entropy is either close to 1 or quite small ð< 0:5): the collec-

tive dynamics is either in a chaotic sea very similar to the

original one or in a period-4 orbit. It should be noted that the

Shannon entropy remains close to 1 as long as the synchroni-

zation error is below 0.03 (e< 0.01) for strong (weak) dissi-

pation and e< 0.005 for the conservative system. This

suggests that the higher the dissipation, the higher the syn-

chronization error that the system can handle without chang-

ing the attractor or, equivalently, without changing the

relative Shannon entropy.

IV. CONCLUSION

Synchronization is an important dynamical process

occurring in networked complex systems. While it has been

widely reported in the case of strong dissipation, it was

almost never investigated in weakly dissipative or conserva-

tive systems. Moreover, it has been mainly considered in

nearly identical coupled units. We investigated the dynami-

cal path followed by coupled systems whose parameter or

frequency mismatch can be significant. We carried out such

a study for strongly, weakly, and conservative systems to

enlighten the possible differences arising during the synchro-

nization process.

On the one hand, when the coupled systems are identical

or slightly different, we choose a coupling form ensuring full

synchronization. In those cases, the observed behavior does

not depend on the dissipation rate and the synchronization

manifold is equivalent to the dynamics produced by an iso-

lated system. On the other hand, when the parameter mis-

match is sufficiently large for producing a trajectory that

visits different domains of the state space, the resulting

dynamics strongly depends on the dissipation rate. For

strongly dissipative systems, as the R€ossler example, the col-

lective dynamics is in between the original attractors. In the

case of weakly dissipative systems as the Lorenz 84 systems,

the dynamics is found to be most often more developed than

the dynamics of the isolated ones. Our results suggest that

this is mainly due to the low dissipation rate which does not

allow the fast release of the synchronization error. The case

of conservative systems as the Sprott A system is easier to

interpret because the dynamics is either the chaotic sea

exhibited by the isolated system or a periodic orbit when the

parameter mismatch is too large. In the Sprott A system, the

orbit is always a period-4 orbit around which the chaotic sea

is organized. Note that we might speak of a limit cycle,

although the oscillator is conservative, because there is a

transient regime along which the synchronization error is

progressively reduced to a very small value.

When there exists a frequency mismatch instead, the

whole previous scenario described for a parameter mismatch

is replicated as long as the mismatch is not too large. For

large frequency mismatch, strongly dissipative systems

reveal high dimensional new attractors, while weakly dissi-

pative systems organize into strongly noise contaminated

attractors, only approximately resembling the original attrac-

tor produced by an isolated system. Coupled conservative

systems either produce a chaotic sea similar to the original

(a)

(b)

(c)

FIG. 16. Relative Shannon entropy ~Sh versus the normalized synchroniza-

tion error e for (a) coupled R€ossler, (b) Lorenz 84, and (c) Sprott A systems.

Each dot corresponds to a particular value of the frequency mismatch and

coupling strength within the same range as in Fig. 14 and a1¼ a2. The red

straight lines are linear fittings.
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one or a period-4 orbit. Consequently, the dissipation rate

strongly affects the way the coupled systems react to a

(large) frequency mismatch.

Finally, despite we used three different systems for inves-

tigating the influence of the dissipation rate on synchroniza-

tion, we explored the possibility of having a single system in

which the dissipation rate could progressively be changed by

tuning one of its parameters as in the modified Sprott A system

proposed by Cang and coworkers.37 However, it was impossi-

ble to produce a chaotic attractor with a small dissipation rate

(only limit cycles were obtained), and chaotic behavior was

only observed for the conservative case (thus equivalent to the

Sprott A system) or for strong dissipation (thus producing a

Lorenz-like attractor). Investigating the effect of the dissipation

rate by just using the same system remains, therefore, a subject

of a great interest.
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