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If recent advances in oncology emphasized the role of microenvironment in tumor growth, the role of delays for modeling tumor growth is still uncertain. In this paper, we considered a model, describing the interactions of tumor cells with their microenvironment made of immune cells and host cells, in which we inserted, as suggested by the clinicians, two time delays, one in the interactions between tumor cells and immune cells and, one in the action of immune cells on tumor cells. We showed analytically that the singular point associated with the co-existence of the three cell populations loses its stability via a Hopf bifurcation. We analytically calculated a range of the delays over which tumor cells are inhibited by immune cells and over which a period-1 limit cycle induced by this Hopf bifurcation is observed. By using a global modeling technique, we investigated how the dynamics observed with two delays can be reproduced by a similar model without delays. The effects of these two delays was thus interpreted in terms of interactions between the cell populations.
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Introduction

Cancer or malignant tumor is a world-wide problem, mainly because the underlying mechanism of tumor growth is not well understood and, consequently, is quite unpredictable and challenging to control it [START_REF] Schuch | Pancreatic tumor growth is regulated by the balance between positive and negative modulators of angiogenesis[END_REF][START_REF] Laurent | Controlling tumor growth by modulating endogenous production of reactive oxygen species[END_REF][START_REF] Chew | Immune microenvironment in tumor progression: Characteristics and challenges for therapy[END_REF][START_REF] Norrby | Metronomic chemotherapy and anti-angiogenesis: can upgraded pre-clinical assays improve clinical trials aimed at controlling tumor growth?[END_REF]. The malignant tumor invades surrounding tissues and primarily grows in the mesenchyme; it has the capability to grow in distant organs once the angiogenic switch occurred, leading to the formation of metastases. Interactions between tumors and their environments not only induce genetic instability of cancer cells but also governs their proliferation [START_REF] Sun | Treatmentinduced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B[END_REF]. The tumor growth is not always very fast: an initial tumor may remain confined to a very limited size below a detectable threshold for a long time by routine imaging; this is designated as "tumor dormancy" [START_REF] Wheelock | The tumor dormant state[END_REF]. Indeed, the sole presence of mutant cells does not necessarily induce a quick proliferation of tumor cells leading to a deleterious cancer. Interactions of tumor cells with immune cells and host cells play an important role in cancer proliferation [START_REF] Bissell | Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression[END_REF] which remains to be clarified. Most of the past mathematical studies were devoted to the role of the immune system [START_REF] Eftimie | Interactions between the immune system and cancer: a brief review of non-spatial mathematical models[END_REF][START_REF] Onofrio | A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences[END_REF] and the the action of some chemotherapy, surgery, radiotherapy or hormonotherapy on tumor growth [START_REF] Kuznetsov | Non-linear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis[END_REF][START_REF] Kirschner | Modeling the immunotherapy of tumor-immune interaction[END_REF][START_REF]Special issue on Mathematical models for the growth, development and treatment of tumors[END_REF][START_REF] Galach | Dynamics of the tumor-tmmune system competition: The effect of the time delay[END_REF][START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF][START_REF] De Pillis | Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations[END_REF][START_REF] Reppas | In silico tumor control induced via alternating immunostimulating and immunosuppressive phases[END_REF]. The role of the proximal environmentthe healthy (host) cells -of the tumor was more rarely considered [START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF][START_REF] Itik | Chaos in a three-dimensional cancer model[END_REF][START_REF] Letellier | What can be learned from a chaotic cancer model?[END_REF][START_REF] Viger | A cancer model for the angiogenic switch[END_REF]. In these last studies, the key point was that the role of host cells was taken into account as clinically suggested [START_REF] Folkman | Angiogenesis in cancer, vascular, rheumatoid and other disease[END_REF][START_REF] Merlo | Cancer as an evolutionary and ecological process[END_REF][START_REF] Malanchi | Interactions between cancer stem cells and their niche govern metastatic colonization[END_REF]. Such an approach still needs further attention.

When delays in the interactions between tumor cells and their environment were considered in models, most often they corresponded to delays between the phases of the cell cycle affecting cells productions, proliferation and differentiation [START_REF] Galach | Dynamics of the tumor-tmmune system competition: The effect of the time delay[END_REF][START_REF] Mayer | A basic mathematical model of the immune response[END_REF][START_REF] Byrne | The effect of time delay on the dynamics of avascular tumor growth[END_REF][START_REF] Villasana | A delay differential equation model for tumor growth[END_REF][START_REF] Yu | Stability and bifurcation analysis in a basic model of the immune response with delays[END_REF][START_REF] Onofrio | Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by[END_REF][START_REF] Bi | Bifurcations in delay differential equations and applications to tumor and immune system interaction models[END_REF][START_REF] Bi | Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays[END_REF][START_REF] Khajanchi | Stability and bifurcation analysis of delay induced tumor-immune interaction model[END_REF]. For instance, it was shown that a delay, introduced in the tumor cells response to changes in their environment, affects proliferation of the former: shorter the delay, stronger the tumor [START_REF] Byrne | The effect of time delay on the dynamics of avascular tumor growth[END_REF]. Although it is not certain if the delay actually plays any significant role from the clinical point of view, it helps to understand that tumor cells are difficult to eradicate due to the speed with which they can respond to any change in their environment, including therapies [START_REF] Sun | Treatmentinduced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B[END_REF][START_REF] Merlo | Cancer as an evolutionary and ecological process[END_REF][START_REF] Malanchi | Interactions between cancer stem cells and their niche govern metastatic colonization[END_REF][START_REF] Garcia-Barros | Tumor response to radiotherapy regulated by endothelial cell apoptosis[END_REF][START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF]. This paper deals with the interactions between tumor cells and their surrounding microenvironment (including the immune system), mainly emphasizing the role of host cells and considering the effect of delays in these interaction processes. We started from the model developed by de Pillis and Radunskaya [START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF] which can produce chaotic behaviors [START_REF] Itik | Chaos in a three-dimensional cancer model[END_REF][START_REF] Letellier | What can be learned from a chaotic cancer model?[END_REF]. The sensitivity to initial conditions of such behaviors easily matches with clinical observations. Our objective is not to investigate a model describing in a quite exhaustive way all phenomena at the cell level but rather a qualitative model working at the tissue level. However, in the original model [START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF][START_REF] Itik | Chaos in a three-dimensional cancer model[END_REF][START_REF] Letellier | What can be learned from a chaotic cancer model?[END_REF], the immune system was assumed to respond instantaneously to the presence of tumor cells. Since there is an obvious delay in the response to the presence of tumor cells, as suggested by clinical evidence that antitumor or activity by immunotherapy is not observed instantaneously but 2 to 10 weeks later after the initiation of Page 3 of 36 A c c e p t e d M a n u s c r i p t a treatment [START_REF] Topalian | Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[END_REF], we modified the original model [START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF] by adding two time delays in the action of tumor cells on immune cells and, of immune cells on tumor cells. The presence of delays in nonlinear dynamical systems always affects the stability of the singular (equilibrium) points and, in particular, affecting the Hopf bifurcation [START_REF] Onofrio | Delay-induced oscillatory dynamics of tumourimmune system interaction[END_REF][START_REF] Piotrowska | An immune system-tumour interactions model with discrete time delay: model analysis and validation[END_REF] observed before more complex dynamics such as chaos [START_REF] Mayer | A basic mathematical model of the immune response[END_REF][START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Hale | Onset of chaos in differential delay equations[END_REF][START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF].

The subsequent part of this paper is organized as follows. Section 2 is devoted to a brief presentation of the delay differential equations governing the interactions between host, immune and tumor cells that we investigated. In Section 3, an analytical study of the model is performed (stability of the singular points, persistence of limit cycle, etc.) and a numerical validation of our analytical results is discussed.

In Section 4, we numerically investigated how this cancer dynamics is affected by our two time delays.

In section 5, we employ the technique of global modeling to study the equivalence of the model without delay. Section 6 provides a discussion of our results.

The Model

Over the last few decades many models have been proposed for understanding the dynamics of cancer-immune interactions but a very few of them includes the host (healthy) cells. In their model, de Pillis and Radunskaya [START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF] considered that the immune and the tumor cells were also interacting with the host cells (Fig. 1). However, they assumed that all the interactions were instantaneous. As suggested by some clinical evidences of delayed interactions [START_REF] Brahmer | Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[END_REF][START_REF] Brahmer | Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer[END_REF], we introduced two time delays, one in the action of tumor cells on effector cells and one, in the action of effector cells on tumor cells. The model as proposed in [START_REF] Pillis Lg De | The dynamics of an optimally controlled tumor model: a case study[END_REF] is thus modified in the set of three delay differential equations

           Ė = ρT E g + T -β 1 T (t -τ 1 )E(t -τ 1 ) -δE, Ḣ = αH 1 -H k1 -γ 1 T H, Ṫ = aT 1 -T k2 -β 2 T (t -τ 2 )E(t -τ 2 ) -γ 2 T H, (1) 
where E(t), H(t) and T (t) designate the population of activated effector cells, host cells and tumor cells at any time t, respectively. In the first equation of system (1), the first term describes the proliferation enhancement of tumor-specific effector cells by tumor cells using a Michaelis-Menten type saturation of the immune system where ρ is the rate of proliferation and g is the value at which the growth rate of effector immune cells is half its maximum value. The term -β 1 T (t - system (1) represents the rate of change in tumor cells where the first term is the logistic growth of tumor cells aT 1 -T k2 , in absence of immune action depending on a growth rate a and the environmental carrying capacity k 2 . Interactions between tumor and effector cells are described by the degradation term -β 2 T (t -τ 2 )E(t -τ 2 ) of the formers by the latter at rate β 2 . The last term γ 2 T H represents the competition between tumor cells and host cells. The role of vascularization could have been taken into account as in [START_REF] Hatzikirou | Therapeutic potential of combinatorial anti-tumor treatments involving immuno-and vaso-modulatory interventions[END_REF][START_REF] Viger | A cancer model for the angiogenic switch[END_REF] but this would have increased the dimensionality of the model under consideration (since endothelial cells would have to be included as in [START_REF] Viger | A cancer model for the angiogenic switch[END_REF]). Our mathematical investigations would have been overcomplicated in an undue way since our objective is to investigate the role of delays in tumor growth and, in particular, in which situations it would be required to introduce them in such a model.

Effector cells are the most relevant cells in the immune system which is distributed throughout our bodies and provide the main defense mechanism against pathogenic microorganism, virally infected cells them. An optimal antitumor efficiency is obtained when there is an activation of different effector cells (co-stimulation of T cells and accessory cells) [START_REF] Zeidler | Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing[END_REF]. However, the formation of such a three-cell complex and the destruction of tumor cells is not an instantaneous process and few hours are required to detect the expression of some cytokine whose presence is required for activating the immune cells. This thus justifies our introduction of a time delay τ 2 in the term describing the killing of tumor cells by the effector cells in the third equation of system [START_REF] Schuch | Pancreatic tumor growth is regulated by the balance between positive and negative modulators of angiogenesis[END_REF]. The tumor microenvironment is rich in cytokines and other inflammatory mediators which can be exploited by tumor cells for their growth and development [START_REF] Seruga | Cytokines and their relationship to the symptoms and outcome of cancer[END_REF]. Since tumor cells may develop multiple resistance mechanisms including local immune suppression, induction of tolerance and systemic dysfunction in T-cell signaling [START_REF] Mizoguchi | Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice[END_REF][START_REF] Drake | Mechanisms of immune evasion by tumors[END_REF][START_REF] Mellman | Cancer immunotherapy comes of age[END_REF], they have the ability to inhibit immune cells making the immune system ineffective. Moreover, tumors may exploit several distinct pathways such as the Program Death-1 (PD1) checkpoint to actively avoid their own destruction by the immune cells. Such a immuno-suppressed environment is not instantaneously obtained and one might consider a time delay τ 1 before which tumor cells reduce the activity of immune cells, that is, reduce the population of effector cells. This time delay is introduced in the term describing the killing of effector cells by tumor cells in the first equation of system [START_REF] Schuch | Pancreatic tumor growth is regulated by the balance between positive and negative modulators of angiogenesis[END_REF]. Tumor cells are known to have a faster dynamics than other types of cells [START_REF] Sun | Treatmentinduced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B[END_REF][START_REF] Garcia-Barros | Tumor response to radiotherapy regulated by endothelial cell apoptosis[END_REF][START_REF] Merlo | Cancer as an evolutionary and ecological process[END_REF][START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF][START_REF] Malanchi | Interactions between cancer stem cells and their niche govern metastatic colonization[END_REF] and, consequently, the delay with which tumor cells act on effector cells is assumed shorter than the delay with which effector cells respond to the presence of tumor cells. Commonly, we should have thus 0 ≤ τ 1 < τ 2 .

For the sake of convenience and for removing numerical stiffness in the dynamics of system (1) we renormalized the state variables according to

(x, y, z) = E g , H k 1 , T k 2 (2) 
and t = at where x designates the normalized population of effector cells, y the population of host cells and z the tumor population. We redefine the set of parameters by

ρ , ḡ , β1 , δ , ᾱ , γ1 , β2 , γ2 = ρ a , g k 2 , β 1 k 2 a , δ a , α a , γ 1 k 2 a , β 2 g a , γ 2 k 1 a . (3) 
The normalized dynamical system (1) is

           ẋ = ρxz g + z -β 1 x(t -τ 1 )z(t -τ 1 ) -δx ẏ = αy(1 -y) -γ 1 yz ż = z(1 -z) -β 2 x(t -τ 2 )z(t -τ 2 ) -γ 2 yz. (4) 
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S + = {ψ ∈ S([-ξ, 0] ∈ R 3 + ) : x(ξ) = ψ 1 (ξ), (5) 
y(ξ) = ψ 2 (ξ), z(ξ) = ψ 3 (ξ)} (6) 
where ξ = [-max{τ 1 , τ 2 }, 0], ψ i (ξ) ≥ 0 (i = 1, 2, 3) and ψ i are continuous functions on the interval [-max{τ 1 , τ 2 }, 0] that may display jumps at ξ = 0.

General Properties and stability Analysis

Our investigation of the delay differential system (4) starts with its positive invariance. System (4) is rewritten as

Ẋ = M(X) (7) 
with X = (x, y, z)

T ∈ R 3 + and M 1 (X) = ρxz g + z -β 1 x(t -τ 1 )z(t -τ 1 ) -δx M 2 (X) = αy(1 -y) -γ 1 yz M 3 (X) = z(1 -z) -β 2 x(t -τ 2 )z(t -τ 2 ) -γ 2 yz (8) 
where M ∈ C ∞ (R 3 + ) is defined in the positive quadrant R 3 + and the mapping M : S + → R 3 . The right hand side of system [START_REF] Bissell | Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression[END_REF] is locally Lipschitz -meaning that the derivatives are bounded -and satisfies

M i (X) | Yi(t) , X ∈ S + = M i (0) (i = 1, 2, 3) . (9) 
According to the second lemma in [START_REF] Yang | Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models[END_REF], every solution of system (4) with the initial conditions (5),

Ψ i (t) ∈ S + , say Y(t) = Y(t; Y(0)
), for all t > 0, that is, it remains positive throughout the domain S + , ∀t > 0.

Proposition 3.1. For any positive initial function

ψ i (i = 1, 2, 3) which is continuous on [-max{τ 1 , τ 2 }, 0],
there exist nonnegative solutions to system (4) which are bounded for all positive time.

Proof: The local existence and uniqueness of any solution to system (4) on the finite interval

[-max{τ 1 , τ 2 }, 0
] is a consequence of some properties as follows. Since the right-hand side of system (4) is C 1 (class of continuously differentiable functions) satisfying the properties of locally Lipschitz functions, the existence and uniqueness of solution to system (4) is guaranteed according to the Cauchy-Lipschitz theorem [START_REF] Diekmann | Delay Equations[END_REF][START_REF] Schatzman | Numerical analysis: a mathematical introduction[END_REF].
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Let us now consider the first equation of system [START_REF] Norrby | Metronomic chemotherapy and anti-angiogenesis: can upgraded pre-clinical assays improve clinical trials aimed at controlling tumor growth?[END_REF]. From the nonnegativity of its solutions, the right-hand side of system ( 4) is bounded by

dx dt ≤ ρxz g + z -δx . (10) 
Hence, x(t) ≤ max{0, ϕ 1 (0)} if ρ δ < 1. From the second equation and since solutions are bounded in the positive octant, the right-hand side is bounded by the Logistic growth term αy(1 -y). Hence, y(t) ≤ max{ϕ 2 (0), 1}. In a similar way, the third equation leads to z(t) ≤ max{ϕ 3 (0), 1}. Therefore, solutions to system (4) are positive and bounded for any time t ∈ R + .

Singular points

System (4) has six singular points in the positive octant (the single ones which have a biological interest).

1. The singular point E 0 (0, 0, 0) is located at the origin of the state space.

2. The tumor-free singular point E 1 (0, ȳ, 0) where ȳ = 1.

3. The tumor singular point E 2 (0, 0, z) where z = 1 which is characterized by the fact that effector and host cells are not present.

4. The host-free singular point E 3 whose coordinates are

x = 1 - ẑ β 2 ŷ = 0 ẑ = (ρ -δ -gβ 1 ) + (ρ -δ -gβ 1 ) 2 -4gδβ 1 2β 1 (11) 
where the third coordinate ẑ is a solution to the quadratic equation

β 1 ẑ2 + ẑ(δ + gβ 1 -ρ) + gδ = 0 . (12) 
Two real positive roots exist if δ g + β 1 < ρ g and ẑ < 1. When ẑ = 1, the singular point E 3 merges with the tumor singular point E 2 (the tumor always persists in that case).

The effector-free singular point

E 4 = x = 0 y = α -γ 1 α -γ 1 γ 2 z = α(1 -γ 2 ) α -γ 1 γ 2 (13) 
exists when α = γ 1 γ 2 . The effector-free singular point is in the positive octant if α > γ 1 , γ 2 < 1, and α > γ 1 γ 2 . If γ 2 = 1, this singular point E 4 merges with the tumor-free singular point E 1 .
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6. The three-cell singular point E * whose coordinates are

x * = α(1 -γ 2 ) + z * (γ 1 γ 2 -α) αβ 2 y * = α -γ 1 z * α z * = (ρ -δ -gβ 1 ) ± (ρ -δ -gβ 1 ) 2 -4gδβ 1 2β 1 (14) 
exists in the positive octant if

                   ρ > min{δ + gβ 1 , δ + gβ 1 + 2 √ gδβ 1 } γ 2 < 1 , γ 1 γ 2 > α z * < α γ 1 .
(H1)

These conditions are hereafter designated as conditions (H1).

The existence of the singular point E * in the positive octant α < γ 1 γ 2 ) excludes the existence of the 130 effector-free singular point E 4 (α > γ 1 γ 2 ), and vice versa. This means that the immune system is either active or not.

Local Stability and Hopf bifurcation

We focus here on the local stability of the biological meaningful singular points, that is, the singular points in the positive octant. Since delays τ 1 and τ 2 do not affect neither the number nor the type of singular points, we first investigate the local stability of the non-delayed system, assuming, τ 1 = τ 2 = 0.

We compute the Jacobian matrix of system (4) at each of the singular points,

J E =         ρz g + z -δ -β 1 z 0 gρx (g + z) 2 -β 1 x 0 α(1 -2y) -γ 1 z -γ 1 y -β 2 z -γ 2 z 1 -2z -γ 2 y -β 2 x         (15) 
At singular point E 0 , the eigenvalues of the Jacobian J E0 at the origin are

Λ 0 = λ 0 1 = -δ < 0 λ 0 2 = α > 0 λ 0 3 = 1 > 0 . (16) 
E 0 thus represents a saddle point with a two-dimensional unstable manifold in the y-z plane and a one-dimensional stable manifold along the x-axis. So, there is no initial condition outside the positive octant that can converge to E 0 .
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The eigenvalues associated with the tumor-free singular point E 1 are

Λ 1 = λ 1 1 = -δ < 0 , λ 1 2 = -α < 0 , λ 1 3 = 1 -γ 2 . (17) 
The singular point E 1 is a stable node when λ 1 3 < 0 and if γ 2 > 1; otherwise this singular point is a saddle point. Note that when the tumor-free singular point E 1 is a stable node, the effector-free singular point E 4 and the three-cell singular points E * do no longer exist. In other words, when the parameter values are such as the tumor-free state is a point attractor, there no longer exists a possibility of a sustained 140 tumor growth, the microenvironment is not conducive to tumor growth.

The eigenvalues associated with the tumor singular point

E 2 are Λ 2 = λ 2 1 = ρ g + 1 -β 1 -δ λ 2 2 = α -γ 1 λ 2 3 = -1 < 0 . (18) 
When ρ < (β 1 +δ)(g+1) and α < γ 1 , that is, when immune and host cells are not sufficiently proliferating to compete for colonizing the site, tumor cells remain the sole cells in the site: the tumor singular point is a stable node. Otherwise, when the growth rates of the effector and the host cells are strong enough to resist the tumor cell proliferation, this singular point is a saddle point, which is thus an impossible 145 state to reach. The tumor cannot grow very quickly since tumor cells remain in competition with the micro-environment.

The eigenvalues associated with the host-free singular point E 3 are

Λ 3 = λ 3 1 = α -γ 1 ẑ λ 3 2,3 (19) 
where λ 3 2,3 are the roots of the characteristics equation

λ 2 + p 1 λ + p 2 = 0 (20) with      p 1 = δ + β 1 ẑ + β 2 x + 2ẑ -1 - ρẑ g + ẑ , p 2 = ρẑ g + ẑ -β 1 ẑ -δ (1 -β 2 x -2ẑ) + β 2 ẑ gρx (g + ẑ) 2 -β 1 x (21) that can be reduced to      p 1 = δ + β 1 + 1 - ρ g + 1 p 2 = - ρ g + 1 -β 1 -δ + β 2 (22) 
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γ 1 > α, that is, when    ρ < (δ + β 1 + 1) (g + 1) ρ < (δ + β 1 ) (g + 1) , (23) 
respectively. Such a configuration arises when the immune system is not sufficiently powerful. Contrary to this, when p 1 < 0, p 2 < 0 and γ 1 < α, the host-free singular point is a saddle point.

One of the eigenvalues associated with the effector-free singular point E 4 is

λ 4 1 = ρz g + z -β 1 z -δ ; ( 24 
)
the other two eigenvalues λ 4 2,3 are the roots of the characteristic equation

λ 2 + q 1 λ + q 2 = 0 ( 25 
)
where

   q 1 = 2z + γ 2 y -αy -1 q 2 = αy(2z + γ 2 y -1) -γ 1 γ 2 yz . (26) 
According to the Routh-Hurwitz criterion, the singular point E 4 is stable if q 1 > 0, q 2 > 0 and λ 4 1 < 0. The latter equality implies that

ρα(γ 2 -1)(γ 1 γ 2 -α) < α(β 1 g + δ)(γ 2 -1)(γ 1 γ 2 -α) + α 2 β 1 (γ 2 -1) 2 + δg(γ 1 γ 2 -α) 2 , ( 27 
)
and λ 4 2,3 < 0 is obtained when

γ 2 (α + γ 1 ) > (α + γ 1 γ 2 2 ) (28) 
and

α + γ 2 1 + γ 1 > 1 . (29) 
The most interesting situation for an accurate understanding of tumor growth is to investigate its interaction with the microenvironment [START_REF] Bissell | Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression[END_REF][START_REF] Weigelt | The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer[END_REF][START_REF] Klein | Evolutionary aspects of cancer resistance[END_REF], that is, in our case, to investigate the singular point E * where effector, host and tumor cells are co-existing. For that reason, we took into account the impact of the two delays τ 1 and τ 2 on the stability of this singular point. In order to do that, we linearized system (4) at E * in the form

dX dt = M X(t) + N X(t -τ 1 ) + P X(t -τ 2 ) ( 30 
)
where

M =       ρz * g + z * -δ 0 gρx * (g + z * ) 2 0 -αy * -γ 1 y * 0 -γ 2 z * 1 -2z * -γ 2 y *       , Page 11 of 36 A c c e p t e d M a n u s c r i p t N =      -β 1 z * 0 -β 1 x * 0 0 0 0 0 0      , P =      0 0 0 0 0 0 -β 2 z * 0 -β 2 x *     
and X(•) = (x(•), y(•), z(•) T ) is the state vector. The characteristic equation of the linearized system

(30) is det λI -M -N e -λτ1 -P e -λτ2 = 0 ( 31 
)
which can be explicitly expressed as

D(λ, τ 1 , τ 2 ) ≡ A(λ) + B(λ)e -λτ1 + C(λ)e -λτ2 = 0 ( 32 
)
where K = {A, B, C} are three polynomials in λ in the form

K(λ) = λ 3 + k 1 λ 2 + k 2 λ + k 3 . (33) 
Their coefficients are

                   A 1 = -1 + 2z * + (γ 2 + α)y * + δ - ρz * g + z * A 2 = αy * (-1 + 2z * + γ 2 y * ) -γ 1 γ 2 y * z * + (-1 + 2z * + (γ 2 + α)y * ) δ - ρz * g + z * A 3 = αy * [(-1 + 2z * + γ 2 y * ) -γ 1 γ 2 y * z * ] δ - ρz * g + z * , (34) 
           B 1 = β 1 z * B 2 = β 1 z * (-1 + 2z * + γ 2 y * + α)y * ) B 3 = β 1 y * z * [α(-1 + 2z * + γ 2 y * ) -γ 1 γ 2 y * z * ] , (35) 
and

                 C 1 = β 2 x * C 2 = αβ 2 x * y * + β 2 x * δ - ρz * g + z * + gρβ 2 x * z * (g + z * ) 2 C 3 = αβ 2 x * y * δ - ρz * g + z * + αβ 2 y * z * gρx * (g + z * ) 2 (36) 
respectively.

150

The three-cell singular point E * is stable if the roots of the characteristic equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF] have negative real parts. The classical Routh-Hurwitz criterion is not applicable to the delayed system (4) since equation ( 32) is a transcendental equation and has an infinite number of solutions. To determine the stability of E * , we investigated the distribution of the roots of equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF] with the help of a Lemma used by Ruan and Wei [START_REF] Ruan | On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[END_REF]. 

λ n-1 + p 0 2 λ n-2 + ... + p 0 n-1 λ + p 0 n + p 1 1 λ n-1 + ... + p 1 n-1 λ + p 1 n e -λτ1 + • • • + p s 1 λ n-1 + ... + p s n-1 λ + p s n e -λτs = 0
an exponential polynomial where τ i ≥ 0 (i = 0, 1, ..., s) and p j i (i = 0, 1, ..., s; j = 0, 1, ..., n) are constants. As (τ 1 , τ 2 , ..., τ s ) vary, the sum of orders of the zeros of P (λ, e -λτ1 , e -λτ2 , ..., e -λτs ) in the open right half plane can change only if a zero appears on or crosses the imaginary axis. According to this lemma, the stability analysis of the singular point can be performed by considering time delays as parameters 160 of the considered system [START_REF] Ruan | On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[END_REF]. System (4) has two discrete time delays τ 1 and τ 2 and, consequently, it is necessary to limit the cases for investigating the roots of the transcendental equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF]. We thus limit ourselves to investigate the stability of the singular point E * for the following cases.

Case I: τ 1 = τ 2 = 0. Without any delay, the characteristic equation ( 32) is reduced to

λ 3 + A 1 + B 1 + C 1 =e11 λ 2 + A 2 + B 2 + C 2 =e12 λ + A 3 + B 3 + C 3 =e13 = 0 . (37) 
If conditions (H1) hold then it can be easily shown that e 13 > 0. Consequently, according to the classical Routh-Hurwitz criterion, all the roots of equation ( 37 Therefore when τ 1 = τ 2 = 0, the three-cell singular point E * is stable.

Case II: τ 1 = 0 and τ 2 > 0. The tumor cells instantaneously reduce the activity of immune cells but there is a delay before the immune system starts killing the tumor cells (τ 2 > 0). The characteristic equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF] has the form

λ 3 + (A 1 + B 1 )λ 2 + (A 2 + B 2 )λ + e -λτ2 (C 1 λ 2 + C 2 λ + C 3 ) = 0 . ( 38 
)
This transcendental equation [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF] has an infinite number of solutions according to Rouché's theorem [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF]. When τ 2 is varied over R + , the sign of the roots of equation ( 38) changes when it crosses the imaginary axis. Since periodic solutions are also relevant to cancer dynamics (Jeff's phenomenon), it is useful to investigate the case where λ = iν. Once the imaginary parts are separated from real parts, we have

ν 3 -(A 2 + B 2 )ν = C 2 ν cos(ντ 2 ) -(C 3 -C 1 ν 2 ) sin(ντ 2 ) (39) 
and

(A 1 + B 1 )ν 2 -(A 3 + B 3 ) = C 2 ν sin(ντ 2 ) + (C 3 -C 1 ν 2 ) cos(ντ 2 ) . ( 40 
)
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Squaring and adding [START_REF] Brahmer | Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[END_REF] to [START_REF] Brahmer | Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer[END_REF], we obtain

ν 6 + m 11 ν 4 + m 12 ν 2 + m 13 = 0 (41) with            m 11 = (A 1 + B 1 ) 2 -2(A 2 + B 2 ) -C 2 1 m 12 = (A 2 + B 2 ) 2 -2(A 1 + B 1 )(A 3 + B 3 ) + 2C 1 C 3 -C 2 2 m 13 = (A 3 + B 3 ) 2 -C 2 3 . (42) 
Let us assume that ν 2 = s 1 , then [START_REF] Hatzikirou | Therapeutic potential of combinatorial anti-tumor treatments involving immuno-and vaso-modulatory interventions[END_REF] takes the form

f (s 1 ) = s 3 1 + m 11 s 2 1 + m 12 s 1 + m 13 = 0 . ( 43 
)
It is clear that

m 11 = δ + β 1 z * - ρz * g + z * 2 + (-1 + 2z * + γ 2 y * ) 2 + 2γ 1 γ 2 y * z * > 0 . ( 44 
) Now, f (0) = m 13 is negative if condition 170 αy * (-1 + 2z * + γ 2 y * ) + γ 1 γ 2 y * z * β 1 z * -δ + β 1 z * - ρz * g + z * < αβ 2 x * y * δ - ρ(z * ) 2 (g + z * ) 2 (H3)
holds. Since f (s 1 ) → ∞ if s 1 → +∞, we can therefore assert that equation ( 43) has at least one nonnegative root. Without any loss of generality, we can conclude that equation ( 41) has a unique positive real root ν 0 or, in other words, the characteristic equation [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF] has purely imaginary roots ±iν 0 .

Solving equations [START_REF] Brahmer | Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[END_REF] and [START_REF] Brahmer | Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer[END_REF] to determine the critical value of τ 2 for which system (4) remains stable, we get

τ j 2 = 2πj ν 0 + 1 ν 0 arccos C 2 1 + ν 3 -(A 2 + B 2 )ν (C 1 ν 2 -C 3 ) 2 + C 2 2 ν 2 - C 3 [-(A 1 + B 1 )ν 2 + (A 3 + B 3 )] (C 1 ν 2 -C 3 ) 2 + C 2 2 ν 2 (45) 
with j = 0, 1, 2, 3... Thus for τ 2 = 0, the three-cell singular point E * is stable and due to Butler's lemma [START_REF] Freedman | The trade-off between mutual interference and time lags in predatorprey systems[END_REF], it remains stable for every τ 2 < τ 0 2 . This means that with a delay beyond a given threshold, the competition between tumor cells and their micro-environment starts to lose its efficiency and, consequently, the proliferation of tumor cells is no longer strongly maintained, making possible fast tumor 175 growth.

We now investigate the onset of a Hopf bifurcation [START_REF] Hassard | Theory and Application of Hopf Bifurcation[END_REF] of system (4) when there is a pair of purely imaginary roots, and for which we need to verify the transversality condition

d Re(λ) dτ 2 τ2=τ (k) 2 > 0 . ( 46 
)
This indicates that there exists at least one eigenvalue whose real part is positive with τ 2 > τ 2 . Our goal is to study how λ evolves when τ 2 is varied. In order to do that, we have to determine

= sign d Re(λ) dτ 2 τ2=τ (k) 2 = sign Re dλ dτ 2 τ2=τ (k) 2 (47) 
by differentiating equation [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF] with respect to τ 2 ; we have thus

dλ dτ 2 3λ 2 + 2(A 1 + B 1 )λ + (A 2 + B 2 ) + (2C 1 λ + C 2 -τ 2 (C 1 λ 2 + C 2 λ + C 3 ))e -λτ2 = λe -λτ2 (C 1 λ 2 + C 2 λ + C 3 ) (48) 
implying that

dλ dτ 2 -1 = 3λ 2 + 2(A 1 + B 1 )λ + (A 2 + B 2 ) λe -λτ2 (C 1 λ 2 + C 2 λ + C 3 ) + 2C 1 λ + C 2 λ(C 1 λ 2 + C 2 λ + C 3 ) - τ 2 λ . (49) 
A straightforward computation shows that the transversality condition is given by Re dλ dτ 2

-1 λ=iν0 = 1 ν 2 0 2ν 6 0 + ν 4 0 (A 1 + B 1 ) 2 -2(A 2 + B 2 ) -C 2 1 (C 3 -C 1 ν 2 0 ) 2 + C 2 2 ν 2 0 + C 2 3 -(A 3 + B 3 ) 2 (C 3 -C 1 ν 2 0 ) 2 + C 2 2 ν 2 0 > 0 . (50) 
Hence the transversality condition holds. We can sketch this result in the theorem as follows.

Theorem 3.2: If conditions (H1) and (H3) hold, then the three-cell singular point E * of system (4) presents a Hopf bifurcation for

τ 2 = τ (k) 2 . Furthermore, point E * is stable if τ 2 < τ (k) 2
and unstable if

τ 2 > τ (k) 2 . Case III: τ 1 > 0, τ 2 ∈ 0, τ (k) 2
. Now we shall study the influence of the two delays τ 1 and τ 2 on the stability of the singular point E * . Without any loss of generality, we used the characteristic equation in the form of equation ( 32) where τ 2 is locally asymptotically stable in 0, τ (k) 2 and τ 1 is considered as a parameter. First, we propose a result concerning the sign of real parts of the roots of equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF]. Proposition 3.2. For τ 2 > 0, if all the roots of the characteristic equation [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF] have negative real parts, then there exist τ 1 (τ 2 ) > 0, such that all the roots of D(λ, τ 1 , τ 2 ) = 0 have negative real part if

τ 1 ∈ [0, τ 1 (τ 2 )). [52]
Proof: Let us assume that equation [START_REF] Wiggins | Introduction to Applied Nonlinear Dynamical Systems and Chaos[END_REF] has no root with a positive real part for τ 2 ∈ 0, τ (k) 2 and τ 1 = 0. In a similar way, equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF] has no root with a positive real part for τ 1 = 0 and τ 2 > 0. By considering τ 1 as a parameter and from the right member of equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF], D(λ, τ 1 , τ 2 ) = 0 is analytic in λ and τ 1 when τ 1 is varied. According to Theorem 2.1 by Ruan and Wei [START_REF] Ruan | On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[END_REF], when τ 1 is varied, the sum of the multiplicity of the zeros of D(λ, τ 1 , τ 2 ) = 0 can vary in the right half-plane only if a zero occurs on or crosses the imaginary axis. Thus equation [START_REF] Bochet | Cancer-associated adipocytes promotes breast tumor radioresistance[END_REF] with τ 1 = 0 has no root with positive real part, then there exists τ 1 (τ 2 ) > 0 such as all roots of equation ( 32) with τ 1 ∈ [0, τ 1 (τ 2 )) (meaning that τ 1 depends on τ 2 ) have negative real parts.
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Domain of existence of the limit cycle

We checked our analytical results with numerical simulations using a modified Heun method [START_REF] Heun | Neue methoden zur approximativen integration der differentialgleichungen einerunabhängigen Veränderlichen[END_REF] for the parameter values reported in Table . 1 but setting ρ = 3.2. Time delay τ 1 is set to 0 and τ 2 is used as the bifurcation parameter. The three-cell singular point E * located at (0.1627, 0.3901, 0.2033) is such that m 11 = 0.2776 > 0 and m 13 = -0.0012 < 0. There exists a single pure real root ν 0 = 0.2301 when 1. Numerically, the Hopf bifurcation occurs at τ 2 = 0.1031 and the resulting period-1 limit cycle persists up to τ 2 = 0.5336. For greater τ 2 values, the trajectory is ejected to infinity.

Hence, according to Theorem 1 in Cooke and van den Driessche [START_REF] Cooke | On the zeros of some transcendental equations[END_REF], it is clear that a bifurcation occurs when the value of τ 2 is increased and in fact, it occurs at τ 0 2 = 0.0956 as computed from equation ( 45) with τ 1 = 0. Hence, according to Butler's lemma [START_REF] Freedman | The trade-off between mutual interference and time lags in predatorprey systems[END_REF], the singular point E * remains stable for τ 2 < τ 0 2 = 0.0956. The Appendix contains an additional information for estimating the delay values for which the limit cycle resulting from a Hopf bifurcation at three-cell singular point E * persists. The period-1 limit cycle persists until the delay reaches a largest value of τ + M = 0.5130 ( from equation (5.22) in the Appendix). This is numerically checked by the bifurcation diagram shown in Fig. 2 where the Hopf bifurcation is shown to occur at τ 0 2 = 0.1031, that is, with a difference slightly greater than 7%.

We computed a phase diagram in the ρ-τ 2 plane for investigating the stability of the singular point E * (Fig. 3). It clearly shows that the singular point E * becomes unstable for rather large value of ρ, meaning that the immune system is efficient only for a large enough recruitment of effector cells by tumor cells. Until it does not take extremely large value, the value of the time delay τ 2 with which the immune system responds to tumor cells does not change significantly the efficiency of the microenvironment for resisting against tumor growth.
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Routes to chaos

The system presents dynamical behaviors qualitatively matching with clinical observations [START_REF] Letellier | What can be learned from a chaotic cancer model?[END_REF]. Our aim is now to investigate how the dynamics of system (4) evolves when one of the delay parameter values is varied. We selected the parameter values as reported in Tab. 1, with ρ = 4. 

By computing the roots of the characteristic equation ( 32), we found that E 0 is an unstable singular point, E 1 and E 2 are stable singular points under some parameter restrictions (they are unstable otherwise).

Singular point E 3 is a saddle-focus with eigenvalues We numerically draw the bifurcation diagram in Fig. 4 for varying τ 2 from 0.01 to 0.23; we used the Poincaré surface of section

P ≡ (x n , y n ) ∈ R 2 | ẏn = 0, ÿn > 0 ( 54 
)
When τ 2 is increased, there is a period-doubling cascade (here starting with a period-4 limit cycle)

and leading to chaotic attractors. There is a period-6 window (τ 2 = 0.044) and a period-5 window (τ 2 ≈ 0.092). Unstable periodic orbits are created up to τ 2 ≈ 0.123. In the present case, the dynamics 220 is the most developed when the two delays are nearly equal (τ 1 ≥ τ 2 ). When the difference is increased, in the case τ 1 > τ 2 as well as in the case τ 2 > τ 1 , the dynamics is reduced (unstable periodic orbits) up to low periodic limit cycle. Thus when τ 2 is decreased, there is a period-doubling bifurcation (τ 2 ≈ 0.24, not shown) leading to a period-2 limit cycle (Fig. 5a) which is destabilized by a second period-doubling Page 18 of 36 bifurcation (τ 2 ≈ 0.2108) inducing a period-4 limit cycle (Fig. 5b). There is in fact a period-doubling cascade ended by a chaotic attractor. There is a period-5 window for τ 2 ≈ 0.15 (Fig. 5c). Another perioddoubling cascade (when τ 2 is decreased) is then observed before new chaotic regimes. We arbitrarily choose to investigate the chaotic attractor produced by system (4) with τ 2 = 0.1 (Fig. 5d). It has been shown [START_REF] Viger | Spatial avascular growth of tumor in a homogeneous environment[END_REF] that a chaotic regime can be associated with a slow tumor growth: this would therefore mean that there is an optimal delay (here at about 0.12 s) for which the tumor growth would be the slowest.

The first-return map to the Poincaré section P of this chaotic attractor is built by using variable y n as shown in Fig. 6. This is a smooth unimodal map as expected after a period-doubling cascade:

indeed, a period-doubling cascade is necessarily associated with such a map [START_REF] Myrberg | Sur l'itération des polynomes réels quadratiques[END_REF]. The unimodal map is characterized by two different branches from either side of a critical point located at the smooth extremum. There is thus an increasing branch (positive slope) and a decreasing branch (negative slope).

It can be shown that the increasing branch, labeled by "0", is associated with a strip with an even number of half-turns (π-twists) and the decreasing branch, labeled by "1", is associated with a strip with an odd number of half-turns [START_REF] Letellier | Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization[END_REF]. These two strips can be synthesized in the form of a branched manifold Page 19 of 36 1.

-also designated as template -made of a splitting chart where the two branches are separated, a socalled "mixer" where branches are twisted (local torsions) and permuted [START_REF] Rosalie | Systematic template extraction from chaotic attractors : I. Genus-one attractors with an inversion symmetry[END_REF] and a branching line where 240 branches are stretched and squeezed (see [START_REF] Rosalie | Systematic template extraction from chaotic attractors : I. Genus-one attractors with an inversion symmetry[END_REF] for details about mixers and [START_REF] Letellier | Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization[END_REF][START_REF] Gilmore | The topology of chaos[END_REF] about templates, for instance).

Chaotic attractors are structured around a collection of unstable periodic orbits which can be used for characterizing their topology by computing topological invariants and for constructing templates [START_REF] Letellier | Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization[END_REF][START_REF] Gilmore | The topology of chaos[END_REF][START_REF] Tufillaro | An experimental approach to nonlinear dynamics and chaos[END_REF]. We thus compute linking numbers between couples of periodic orbits by counting oriented crossings in a regular plane projection, that is, in a plane projection where there is no more than two segments crossing at a given point [START_REF] Tufillaro | An experimental approach to nonlinear dynamics and chaos[END_REF]. Period-p orbits are designated by a so-called orbital sequence made of p symbols σ n determined from the locations of their p periodic points y n according to

σ n = 0 if y n < y c 1 otherwise. ( 55 
)
Page 20 of 36 where y c is the y-coordinate of the smooth maximum in the map shown in Fig. 6. As an example, the knot made of the period-2 orbit (10) and of the period-5 orbit (10110) is shown in Fig. 7: eight negative crossings were found thus leading to a linking number equal to -4 (the linking number is equal to the half-sum of the oriented crossings between segments of the two different orbits, self-crossings being ignored). Using many other linking numbers, we found that all of them are correctly predicted by a template described by the linking matrix 

M ij =   0 -1 -1 -1   (56) 
where on-diagonal element M ii is associated with the local torsion applied to the ith branch and offdiagonal element M ij (i = j) corresponds to the permutations between the ith and the jth branches 250 [START_REF] Tufillaro | An experimental approach to nonlinear dynamics and chaos[END_REF][START_REF] Letellier | Unstable periodic orbits and templates of the Rössler system: toward a systematic topological characterization[END_REF]. This linking matrix is sufficient to describe uniquely the template because we used the standard insertion convention at the branching line, according to which branches from back to front are ordered Page 21 of 36

A c c e p t e d M a n u s c r i p t from left to right [START_REF] Tufillaro | An experimental approach to nonlinear dynamics and chaos[END_REF]. The corresponding template is shown in Fig. 8 with the two periodic orbits [START_REF] Kuznetsov | Non-linear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis[END_REF] and (10110). Eight negative crossings -three induced by the local torsion applied to branch "1" and five induced by the permutation between the two branches -are found, thus leading to lk(10, 10110) = -4 255 as counted in the regular plane projection shown in Fig. 7: the template correctly predicts the linking number lk [START_REF] Kuznetsov | Non-linear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis[END_REF]10110) as well as all the others we investigated, it is therefore validated. This accurate characterization of the dynamics will allow us to show that we are able to reproduce correctly the dynamics with a system without delays.

(10110) [START_REF] Norrby | Metronomic chemotherapy and anti-angiogenesis: can upgraded pre-clinical assays improve clinical trials aimed at controlling tumor growth?[END_REF]. Other parameter values as reported in Tab. 1. Color legend as follows: Grey = stable singular point; blue = period-1 limit cycle; red = period-2 limit cycle; green = period-3 limit cycle; black = period-4 limit cycle; yellow = period-5 limit cycle; cyan = period ≥ 6 limit cycle or chaotic attractor; white = unbounded state.

The second two-dimensional bifurcation diagram is spanned by the recruitment of effector cells by tumor cells ρ and the second time delay τ 2 (Fig. 9b). When τ 2 is set to a given value, increasing ρ develops the dynamics, that is, new unstable periodic orbits are created up to have a chaotic attractor (in the cyan domain). Depending on τ 2 value, when ρ is too much increased, reverse bifurcation can occur and some unstable periodic orbits are pruned. For a given value of the recruitment of effector cells by tumor cells ρ, increasing the delay τ 2 induces a pruning of the population of unstable periodic orbits and the dynamics is "restricted" (not developed). This means that when effector cells are too long to react for killing tumor cells, the dynamics moves -in the parameter space -toward a stable three-cell singular point: tumor growth can thus occur more easily. From a clinical point of view, this would mean that increasing too much the delay τ 2 with which the immune system kills tumor cells tends to reduce the resistance of the environment to tumor growth and therefore would induce a bad prognostic. This second bifurcation diagram, compared to the diagram shown in Fig. 9a, shows that the dynamics depends much more on delay τ 2 and parameter ρ than on delay τ 1 .

Equivalence with a model without delay

In order to identify parameter values that a system without delays would have for producing an 280 attractor topologically equivalent to the attractor produced by system (4) with two delays, we first produced a multivariate time series made of the evolution of the three variables of the latter system (we used for this parameter values as used for Fig. 6). Then, a global modeling technique was applied to and McNamara [START_REF] Crutchfield | Equations of motion from a data series[END_REF] for discrete map and then for differential equations [START_REF] Gouesbet | Global vector field reconstruction by using a multivariate polynomial L 2 -approximation on nets[END_REF]. A review about global modeling can be found in [START_REF] Aguirre | Modeling nonlinear dynamics and chaos: A review[END_REF].

Our objective is thus to use global modeling for producing a set of differential equations without delays but with the same dynamics. The technique here used is based on the initial approach for ordinary differential equations [START_REF] Gouesbet | Global vector field reconstruction by using a multivariate polynomial L 2 -approximation on nets[END_REF] and improved by Mangiarotti and coworkers [START_REF] Mangiarotti | Polynomial search and global modeling: two algorithms for modeling chaos[END_REF]. These algorithms were validated with many experimental times series [START_REF] Mangiarotti | Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco[END_REF][START_REF] Mangiarotti | Low dimensional chaotic models for the plague epidemic in Bombay (1896-1911)[END_REF]. Rather than imposing a priori the structure of the differential equations and only identifying parameter values, we preferred to leave a structure selection technique providing such a structure directly from the time series produced by the system [START_REF] Norrby | Metronomic chemotherapy and anti-angiogenesis: can upgraded pre-clinical assays improve clinical trials aimed at controlling tumor growth?[END_REF] with two delays. As other available techniques [START_REF] Aguirre | Dynamical effects of overparametrization in nonlinear models[END_REF][START_REF] Aguirre | Structure-selection techniques applied to continuous-time nonlinear models[END_REF], the structure selection here used [START_REF] Mangiarotti | Polynomial search and global modeling: two algorithms for modeling chaos[END_REF] has a strong limitation since it is not possible for now to deal with rational functions as would be required for the first equation of system (4). This will be overcome once we will have selected the structure -therefore necessarily approximated -for a polynomial global model.

As a first step, the technique for selecting the polynomial structure returns the set of differential equation -without delays -as

         ẋ = a 1 x + a 2 xz ẏ = b 1 y + b 2 y 2 + b 3 yz ż = c 1 z + c 2 z 2 + c 3 xz + c 4 yz , (57) 
that is, with nearly the correct structure of system (4). The single difference being that term a 2 xz should be a 2 xz 1+z . The numerical values of the coefficients provided by a chaotic attractor whose shape was close to the original one but the first-return map to a Poincaré section was slightly deformed compared to the original one shown in Fig. 6. Commonly, the development of chaotic attractor produced by a global model can be adjusted to the desired behavior by varying one of its parameter values. In spite of this, all our trials failed to reproduce correctly the target dynamics. This was only possible by replacing the term xz by xz 1+z in the first equation. Then, parameter b 1 was only slightly varied to produce the dynamical regime shown in Fig. 11. The global model without delays producing an attractor topologically equivalent to the original one is thus

         ẋ = -0.407x + 2.780 xz 1 + z ẏ = 0.533 (1 -0.9456y) -1.497yz ż = 0.753 (1 -0.8486z) -0.703yz -2.323xz (58) 
The topological properties of the resulting attractor were carefully compared with the original ones, and the values of parameter ρ in the second equation was adjusted for having the same population of unstable periodic orbits embedded within the attractor (checked for orbits whose period is less than 9 as Page 25 of 36 reported in Table 2). The attractor is fully described by the template obtained for the original attractor (Fig. 8). 58) is therefore also due to the presence of these two delays. Another consequence of the presence of the two delays is that it requires stronger host cells in their competition with tumor cells for nutrients and oxygen since, without delays, the inactivation rate γ 2 of tumor cells by host cells is reduced by about 30%. Consequently, and not surprisingly, delays in the response of the immune system decrease the strength of the barriers provided by host and immune cells against tumor growth. With our global model, we showed that these delays do not induce dynamical regimes which are not observed when there is no delays.

• (10111111) • • (10) • • (1011111) • • (1011) • • (1011110) • • (10111010) • • (10111) • • (101110) • • (10110) • • (101111) • • (1011010) • • (10111110) • • ( 

Discussion

Investigating tumor growth taking into account the microenvironment received much attention although most of the studies were focussed on the immune system [START_REF] Fridman | The immune microenvironment of human tumors: general significance and clinical impact[END_REF]. The relevance of other stromal cells were only recently recognized [START_REF] Li | Tumor microenvironment: the role of the tumor stroma in cancer[END_REF]76,77,78]. These interactions are responsible for the differences between the doubling times observed in culture cancer cell lines and the doubling times of tumor observed in patients [79]. Moreover, treatments targeting host cells such as immunotherapy [START_REF] Topalian | Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[END_REF] and anti-angiogenic therapy [80, 81] showed significant anti-tumor effects in numerous solid tumors. Interactions between host and malignant cells in the tumor microenvironment could thus become the new key in future cancer therapy and new treatment strategy. Investigating models taking into account these interactions is therefore of a crucial interest not only for understanding tumor growth but also for designing new therapies. In this paper we investigated a model describing interactions between host, immune and tumor cells at the tissue level whose dynamics qualitatively correspond to various clinical features [START_REF] Letellier | What can be learned from a chaotic cancer model?[END_REF]. Since some of these interactions can be clearly delayed in time, we introduced two time delays in i) the term describing how tumor cells inhibit the activity of immune cells and ii) the term corresponding to the inhibition of tumor cells by effector cells.

What is important to note here is that all the behaviors which were obtained with our delay differential model were already observed in the related model without delays (τ 1 = τ 2 = 0) as investigated in [START_REF] Letellier | What can be learned from a chaotic cancer model?[END_REF]. In particular the dormant cancer observed with large growth rate of host cells (α = 1 rather than 0.5 as used for Fig. 5d) was reproduced with nonzero delays. The delay value did not affect the fact that varying the tumor inhibition rate β 2 by the effector cells does not induce any obvious bifurcation. As suggested by our numerical simulations, introducing delays in the model does not induce any new dynamics compared to those produced by the non-delay system. By using a global modeling technique, we were able to obtain the parameter values required for producing a chaotic attractor with a system without delays and which is topologically equivalent to the attractor obtained with the system with two delays. Our ability to do that for a chaotic attractor -one of the most difficult regime to reproduce accurately -shows that any regimes produced with delays can be reproduced by a system without delays. The displacement in Page 27 of 36 

AppendixA. Domain of existence of the limit cycle

This appendix provides an additional support for estimating the delay values for which the limit cycle resulting from a Hopf bifurcation at the three-cell singular point E * persists. We started by estimating the delay window τ M = max{τ 1 , τ 2 } over which the periodic solution remains stable. Let us assume that system (4) is defined on [-τ, +∞), the space of all continuous real-valued function defined in S + satisfying initial conditions (5) on [-τ, 0). First, we linearize system (4) around the three-cell singular point E * , leading to

           ẋ = ρz * g + z *
x -δx -β 1 z * x(t -τ M ) + gρx * (g + z * ) 2 z -β 

τ 1 )Figure 1 :

 11 Figure 1: (Color online) Schematic diagram of model (1) where effector, tumor and host cells are in green (gray), red(light black) and blue(black), respectively.

  and tumor cells. Effector cells mainly kill tumor cells by a two stage process: i) they deliver biochemical Page 5 of 36 A c c e p t e d M a n u s c r i p t signals to tumor cells and, ii) they bind the membrane of cancerous cells. When effector cells form tumoreffector complexes, effector cells emanate soluble diffusible chemicals (known as "chemokines") which mobilize more and more effector cells around the neighborhood of malignant tumor cells and destroy
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  conditions for the existence of a periodic solution. First, we look for purely imaginary Page 14 of 36 A c c e p t e d M a n u s c r i p t roots λ = iν 0 of the characteristic equation (32) implying that |A(iν 0 )| = |B(iν 0 )| determines the set of values for τ (k)

Figure 2 :

 2 Figure 2: (Color online) Numerical bifurcation diagram of system (4) versus delay τ 2 for ρ = 3.2, τ 1 = 0 and other parameter values as reported in Table1. Numerically, the Hopf bifurcation occurs at τ 2 = 0.1031 and the resulting

5 and τ 1

 1 = 0.012. τ 2 is selected as the bifurcation parameter. With the chosen parameter values, system (4) has five singular points in the positive octant, which are

2 Figure 3 :Figure 4 :

 234 Figure 3: (Color online) Two-dimensional bifurcation diagram for the three-cell singular point E * of system (4). The recruitment of effector cells by tumor cells ρ against the time delay τ 2 is plotted. Other parameter values as reported in Tab. 1 and τ 1 = 0. Colored regions show stability of the three-cell singular point E * : stable (red/gray) and unstable (blue/black).
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  p t e d M a n u s c r i p t (a) τ 2 = 0.22: period-2 limit cycle (b) τ 2 = 0.20: period-4 limit cycle (c) τ 2 = 0.15: period-5 limit cycle (d) τ 2 = 0.10: chaotic attractor

Figure 5 :

 5 Figure 5: (Color online) Dynamical behaviors produced by system (4) for different values of the second time delay τ 2 . Initial conditions x(0) = 0.1, y(0) = 0.2, and z(0) = 0.5. Parameter values as reported in Tab. 1, ρ = 4.5 and τ 1 = 0.012.

Figure 6 :

 6 Figure 6: Smooth unimodal first-return map to a Poincaré section of the chaotic attractor observed for ρ = 4.5, τ 1 = 0.012 and τ 2 = 0.1. Other parameter values as reported in Table1.

A c c e p t e d M a n u s c r i p t

  

Figure 7 :

 7 Figure 7: Knot made of the period-2 orbit (10) and of the period-5 orbit (10110) which were extracted from the chaotic attractor shown in Fig. 5d. Eight negative crossings were counted on this regular plane projection.

5 Figure 8 : 7 .Figure 9 :

 5879 Figure 8: Template of the chaotic attractor shown in Fig. 5d drawn with the period-2 orbit (10) and the period-5 orbit (10110). Eight negative crossings were counted on the template as in the regular plane projection shown in Fig. 7.

Figure 10 :

 10 Figure 10: Bifurcation diagram versus β 1 of system (4). Other parameter values as reported in Tab. 1, ρ = 4.5, τ 1 = 0.012 and τ 2 = 0.20.

  these three time series. The objective of a global modeling technique is to automatically produce a set of Page 24 of 36 A c c e p t e d M a n u s c r i p t ordinary differential equations from "measured" time series. The principle was proposed by Crutchfield

Figure 11 :

 11 Figure 11: Chaotic attractor produced by the system with two delays and by the global model estimated from time series produced with that system.
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  latter ones. The reduction of ρ in the global model (

A c c e p t e d M a n u s c r i p t

  the parameter space show that larger the delays we introduced in the response of the immune system to the presence of tumor cells, stronger the proliferation of tumor cell is. To balance the effect of these delays, it is necessary to increase the growth rate of immune cells and the strength of host cells in their competition against tumor cells. Due to the additional complexity for investigating the solutions of systems with delays, we would recommend to not insert delays in cancer model until a specific action on the delay with which immune cells respond to tumor cells is specifically investigated. Banerjee S, Khajanchi S, Chaudhury S, A mathematical model to elucidate brain tumor abrogation by immunotherapy with T11 target structure, PLoS ONE 10(5): e0123611, 2015.[77] Mao Y, Keller ET, Garfield GH, Shen K, and Wang J, Stromal cells in tumor microenvironment and breast cancer, Cancer Metastasis Review 32: 303-315, 2013.[78] Quail DF, Joyce JA, Microenvironmental regulation of tumor progression and metastasis, Nature Medicine 19: 1423-1437, 2013. [79] Chan KS, Koh CG, and Li HY, Mitosis-targeted anti-cancer therapies: where they stand, Cell Death and Disease 3: e411, 2012. [80] Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, Sorio R, Vergote I, Witteveen P, Bamias A, Pereira D, Wimberger P, Oaknin P, Mirza MR, Follana P, Bollag D, and Ray-Coquard I, Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: The AURELIA open-label randomized phase III trial, J. Clin. Oncol. 32: 1302-1308, 2014. [81] Stockler MR, Hilpert F, Friedlander M, King MT, Wenzel L, Lee CK, Joly F, de Gregorio N, Arranz JA, Mirza MR, Sorio R, Freudensprung U, Sneller V, Hales G, and Pujade-Lauraine E, Patientreported outcome results from the open-label phase III AURELIA trial evaluating bevacizumabcontaining therapy for platinum-resistant ovarian cancer, J. Clin. Oncol. 32: 1309-1316, 2014.

  1 x * z(t -τ M ) ẏ = -αy * y -γ 1 y * z ż = -β 2 z * x(t -τ M ) -γ 2 z * y + (1 -2z * -γ 2 y * )z -β 2 x * z(t -τ M ) .

Table 1 :

 1 Symbols, biological meaning and numerical values of parameters from system (4). Parameter values of the global model (58) obtained without delay (see Section 5) are also reported.

	Name Description

Table 2 :

 2 Population of unstable periodic orbits embedded within the chaotic attractor produced by system (4) with two delays and by the global model (58) without delays. Only orbits whose period is less than 9 are reported.

	σ	with delays without	σ	with delays without
	(1)	•		

  When parameter values are compared (see Table1), it can be first noted that the growth rate ρ of effector cells is smaller (2.780) than the original values (4.5) but this is most likely the result of the fact that the term -β 1 xz merged with term ρ xz 1+z since β 1 = 0 in the global model[START_REF] Viger | Spatial avascular growth of tumor in a homogeneous environment[END_REF], thus inducing 305 necessarily a reduced value for ρ. When there is no delays, the decay rate of effector cells is smaller by about 20% than the original value. The other significantly different values are the tumor cell inactivation

	1011011)	•	•

β 2 rate by effector cells (smaller by about 7% without delays). The delay τ 2 with which the immune cells respond to the presence of tumor cells is therefore balanced by a stronger action of former cells on Page 26 of 36

Applying a Laplace transformation on both sides of (A.1), we have

and where L x (η), L y (η) and L z (η) are Laplace transformations of x(t), y(t) and z(t), respectively. According to the theory developed by Freedman et al. [START_REF] Schatzman | Numerical analysis: a mathematical introduction[END_REF] and using the classical Nyquist criterion, the singular point E * is stable when Re B(iξ 0 ) = 0 (A.3) and Im B(iξ 0 ) > 0 (A.4) with

The minimal nonnegative root of equations (A.3) and (A.4) is ξ 0 > 0 with

Rewriting equations (A.3) and (A.4) as

A c c e p t e d M a n u s c r i p t and

provides sufficient conditions for the stability of the singular point E * . To estimate the delay values we shall use the two conditions (A.6) and (A.7). Now our interest is to find the upper bound ξ + for ξ 0 535 which is independent of τ M , the latter remaining to estimate. So condition (A.7) holds for any value 0 ≤ ξ ≤ ξ + at ξ = ξ 0 . Equation (A.6) can thus be rewritten as

For estimating the delay value, we maximize the right member of equation (A.8) where | cos(ξ 0 τ M ) |≤ 1, and | sin(ξ 0 τ M ) |≤ 1. Consequently, we have

which can be expressed as

Hence it is obvious that ξ 0 ≤ ξ + . Also, from condition (A.7), we have

For τ M = 0, this inequality has the form ξ 2 0 < a 2 + b 2 , and from equation (A.8),

Therefore, we can assert that at τ M = 0 the singular point E * is stable if

holds. Now, for sufficiently small τ M > 0, condition (A.10) continues to hold.

540

Substituting equation (A.8) into condition (A.10), and rearranging the expression, we have

Using the bounds, we obtain 

From condition (A.11) we obtain that

Now it follows that

for 0 ≤ τ M ≤ τ + M and, consequently, the Nyquist criterion holds: the maximum delay value τ + M ensures the existence of the limit cycle.