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Abstract 

A multi-scale analysis of the capillary instability of Newtonian liquid ligament is presented. The DNS code ARCHER calculates the 

temporal evolution of the ligament subject to a capillary instability for two initial wavenumbers. The analysis of the process is 

performed with a multi-scale approach initially developed to investigate liquid atomisation processes from 2-D visualisation images. 

In the present work, the axisymmetric condition allows performing a 3-D analysis also. The analysis reports three characteristic 

scales that divide the scale space in three regions. In each region, specific scale dynamics is found illustrating the involvement of 

different mechanisms. In particular, the characteristic small scale reports three regimes of decrease corresponding to the known 

dynamics of the neck of a contracting ligament until breakup occurs. Furthermore, the existence of a pure elongation mechanism 

during the process is identified. This mechanism limits the overall surface area reduction associated to the capillary instability. The 

evolution of the elongation rate of this specific mechanism appears to be equal to the one of the small scale evolution rate. 

Keywords: Atomisation, Capillary instability, Multi-scale analysis 

 

1. Introduction 

The atomisation process designates the behaviour of liquid 

flow free of any parietal constraint and evolving in a gaseous 

environment. The liquid flow deforms by the growth of initial 

perturbations and the deformations amplify until the flow 

breaks into ligaments and droplets. During the process, the 

liquid-gas interface continuously varies. This surface evolution 

is associated to energy transfer since interface creation requires 

energy whereas interface reduction returns energy to the system 

[1]. The examination of liquid atomisation processes highlights 

that interface creation and reduction mechanisms occurs at the 

same time but at different scales. It appears therefore pertinent 

to address liquid atomisation processes by considering the 

temporal evolution of the liquid system interface and by 

adopting a multi-scale approach.  

A multi-scale description of an atomization process was 

suggested in [2] on the basis of image analysing. The approach 

consisted in measuring the surface-based scale distribution 

which constitutes a measure of the specific length as a function 

of the scale of observation. Even if the process is 3-D, this 2-D 

approach is an interesting source of information. For instance, 

its application to atomising stretched liquid allowed identifying 

several mechanisms involved in the process [3].  

The objective of the present work is to continue exploring 

the relevance of this multi-scale analysis by applying on an 

academic process, i.e., the capillary instability of a liquid 

ligament. For this purpose, capillary instability is simulated by a 

DNS code and the analysis is performed on images provided by 

the code. Furthermore, being in a situation where the 

axisymmetric condition stands, the traditional 2-D approach is 

completed here by a 3-D multi-scale analysis. 

2. Numerical work 

2.1. The code ARCHER 

Developed in the CORIA laboratory, the code ARCHER 

used in this paper is mainly devoted to multi-phase flows. 

Details on this code can be found in [4, 5]. The two-phase flow 

is modelled by a single set of incompressible Navier-Stokes 

equations with variable density and viscosity, and interfacial 

forces. These equations are coupled with the transport equation 

of the phase function C: 

∇. 𝑈 = 0 (1) 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈. ∇𝑈) = −∇𝑝 + 𝜌𝑔 + ∇. (𝜇(∇𝑈 + ∇𝑈𝑇)) + 𝐹𝑠𝑡 (2) 

𝜕𝐶

𝜕𝑡
+ 𝑈. ∇𝐶 = 0 (3) 

In ARCHER solver, the phase function is modelled with 

both Volume Of Fluid and Level Set methods, in the CLSVOF 

framework. Jump conditions across the interface are taken into 

account with the Ghost Fluid approach. These methods are 

coupled with a projection method to solve the Navier-Stokes 

equations on a staggered grid. To treat the convective derivative 

in Eq. (2) we used WENO5 scheme and 2-order central 

difference scheme for other. The time integration is performed 

with RK3TVD scheme. All details of these techniques, and how 

Eqs. (1-3) are solved, were presented in previous works [4, 5]. 

The present calculations are performed in a 64x32x32 domain 

with the VOF coupling turned off as no mass loss is observed 

and higher quality curvature calculation (2nd order of accuracy) 

can be obtained using pure Level Set method. In order to enable 

varying disturbance wavelength , domain scaling has been 

introduced. This required constructing a new ARCHER code 

version for which the x, y and z can be arbitrarily changed, 

i.e., non-uniform discretization is allowed unlike [4, 5]. 

Simulations were performed for a ligament of water 

(surface tension  = 0.070 N/m, density L = 1000 kg/m3, 

dynamic viscosity µL = 0.001 Pa.s) into air. The initial diameter 

is equal to Dj = 666 µm and the capillary time 

t = (LDj
3/)0.5 = 2 ms. Two initial perturbation wavenumbers 

are considered (k = Dj/ = 0.55 and 0.75) and the initial 

amplitude is constant ( 0 = 17 µm; 0/Dj = 0.025). 

2.2. Results 

The results of the simulation are very similar to those 

reported by previous simulations [6]. Figure 1 presents the 
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temporal evolution of the ligament shape for the case k = 0.55. 

The behaviour can be described in three steps. During the first 

step (first column in Fig. 5), the ligament deformation increases 

in amplitude but keeps its initial sinusoidal shape. During the 

second step (middle column in Fig. 5) the deformation of the 

ligament is not sinusoidal anymore. Some Liquid in the central 

region is drained towards the swelling ends, which creates a 

liquid thread. Two ligament necks appear and travel on each 

side of the centre towards the deformation crests. This 

behaviour was observed by previous investigations [6, 7] and is 

the mark of the production of a satellite drop. Finally, during the 

third step (right column in Fig. 5) the ligament necks do not 

travel anymore and the local high pressure they impose expulse 

the liquid on each side of the neck regions, isolating the central 

thread to the crest regions and reducing the neck diameter until 

breakup occurs. After breakup, the central thread rearranges as a 

satellite drop. In the present work, the analysis stops at t = tBU. 

 

 

 
Figure 1: Simulated temporal evolution of the capillary instability (k = 0.55). From left to right column: the three steps of the 

ligament behaviour 

 

A similar behaviour is obtained for k = 0.75. The main 

difference between the two wavenumber is the duration of the 

second step that less for k = 0.75. In consequence, the breakup 

time tBU is less for this wavenumber and the satellite produced 

in smaller. 

3. Multi-scale Analysis 

3.1. Description of the method 

The multi-scale approach uses the Euclidean Distance Mapping 

(EDM) which is a “sausage” technique to measure the fractal 

dimension of a contour. The EDM technique is based on 

successive erosion operations whose application in 2-D is 

illustrated in Fig. 2. The top part of this figure shows the liquid 

system at a given time. Its 2-D projected surface area is ST(t) 

(grey surface in Fig. 2-top). The erosion with a circle of 

diameter d consists in removing all points that are at a distance 

less than d/2 from the system interface (see Fig. 2-bottom). The 

dark grey surface area in Fig. 2-bottom is the remaining surface 

noted S(d,t). This operation is repeated for all possible values of 

d, called the scale, and at all times. The measured surface areas 

are then used to calculate the cumulative surface-based scale 

distribution E2(d,t) defined by: 

 
   

 tS

t,dStS
t,dE

T

T 
2  (4) 

 
Figure 2: Erosion of the system with a circular structuring 

element of diameter d. Top: The liquid system before the 

erosion has a surface area equal to ST(t). Bottom: After the 

erosion operation, the light grey surface is removed and the dark 

grey surface is the remaining surface S(d,t) 

 

The cumulative scale distribution can be defined in 3-D also. 

The system is characterized by its total volume VT, which is 

time independent contrary to the 2-D projected surface area 

ST(t), and the erosion operation is performed with a sphere of 

diameter d. After each erosion step, the remaining volume 

V(d,t) is measured. The cumulative volume-based scale 

distribution E3(d,t) is then obtained similarly to the distribution 

E2(d,t) given by Eq. (4). The multi-scale analysis considers the 

scale distribution en(d,t) that is the first derivative in the scale 

space of the cumulative distribution En(d,t), i.e., 

en(d,t) = dEn(d,t)/dd (n = 2, 3). The scale-distribution en(d,t) is a 

decreasing function in the space scale and is equivalent to the 

inverse of a length. The distribution e3(d,t) is the generalization 

at all scales of the specific-surface-area introduced by Evers [1] 

and e2(d,t) is its counterpart in 2-D. In particular, for d = 0, 

e3(0,t) represents the interface surface area divided by twice the 

total volume of the system and e2(0,t) is the interface length of 

the 2-D system projection divided by twice the surface area of 

this projection.  

As an illustration, we consider the basic mechanism of a 

elongating cylinder. The temporal evolutions of the length L(t) 

and of the diameter D(t) of the cylinder are connected with each 

other by the constant volume condition. Following [6], the 

elongation rate of the cylinder is noted   LdtdL . For this 

simple geometric case, the scale distributions en(d,t) can be 

calculated. It comes: 

 
 

2

1
1


















n

n
)t(D

d

tD

n
t,de  (5) 

The distribution e2(d,t) is scale independent and is a function of 

the diameter D(t) only, i.e., e2(d,t) = 1/D(t). The distribution 

e3(d,t) is linear with the scale d and its first derivative in the 

scale space d,  t,d'e3  is a function of the diameter D(t) only, 

i.e.,  t,d'e3  = -1/D2(t). The elongation rate can be expressed 

by either distribution: 

 
 

 
 t,d'e

t,d'e

t,de

t,de

3

3

2

2





  (6) 

where the dot indicates a temporal derivative and the prime a 

scale derivative. We see that the presence of a pure elongation 

mechanism can be detected from the dependence of en(d,t) with 
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the scale and that the characteristic time of this mechanism can 

be estimated from Eq. (6). 

3.2. The Multi-Scale Analysis 

In the present analysis, e2(d,t) is measured on the images similar 

to those shown in Fig. 1 and the distribution e3(d,t) is calculated 

from these images assuming the axisymmetric condition. Image 

analyses are performed with the software ImageJ. For k = 0.55, 

Figs. 3 and 4 show the temporal evolution of e2(d,t) and e3(d,t), 

respectively.  
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Figure 3: Temporal evolution of the surface-based scale 

distribution e2(d,t) (k = 0.55). 
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Figure 4: Temporal evolution of the volume-based scale 

distribution e3(d,t) (k = 0.55). 

 

The scale distribution e2(d,t) follows a distinctive behaviour for 

the three steps identified in Fig. 1. During the first steps (red 

curves), e2(d,t) remains close to a step function meaning that the 

global shape of the system is close to a cylinder. The 

deformation is perceived by a retraction of the small-scale range 

for which e2(d,t) is constant and by an increase of the maximum 

scale in the large-scale range. During the second step (green 

curves in Fig. 3), the evolution of e2(d,t) is similar to the one of 

the first step except that e2(d,t) in the small-scale region 

increases. Finally, during the third stage, e2(d,t) doesn’t vary 

significantly in the large-scale region, the retraction of the 

small-scale region stops but e2(d,t) is not constant anymore is 

this very region.  

The temporal evolution of the distribution e3(d,t) for the same 

case shows less pronounced variations (Fig. 4). The maximum 

scale increases during the first and the second stages mainly 

and, in the small-scale region, e3(d,t) remains rather linear.  

The facts that, in the small-scale region, e2(d,t) is constant and 

e3(d,t) is linear with the scale suggest the presence of an 

elongation mechanism during the process. This is confirmed by 

the functions  t,de2  and  t,d'e3 . An example of these 

functions are shown in Fig. 5 for k = 0.55 at t = 6.54 ms. 
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Figure 5: Introduction of the characteristic scales d1, d2 and d3. 

 

The functions  t,de2  and  t,d'e3  are similar in shape but not 

in value and have opposite sign (Fig. 5). They divide the scale 

space in three regions: in the small-scale region (d < d1), the 

functions  t,de2  and  t,d'e3  are constant and  t,de2  > 0 

and  t,d'e3  < 0; in the intermediate-scale region (d1 < d < d2), 

 t,de2  < 0 and  t,d'e3  > 0; in the large-scale region 

(d2 < d < d3),  t,de2  > 0 and  t,d'e3  < 0. The evolution of the 

liquid system is described by the variation of the liquid 

distribution in the scale space. Some scales will cover (or 

contain) more and more liquid whereas others will cover less 

and less liquid. The increase of the amount of liquid covered by 

a given scale is associated to an elongation process and, 

inversely, the decrease of the amount of liquid covered by a 

given scale is associated to a contraction process. Referring to 

the case of the elongated cylinder evoked above, we see that an 

elongation and contraction mechanisms correspond to 

 t,de2  > 0 (  t,d'e3  < 0) and  t,de2  < 0 (  t,d'e3  > 0) 

respectively. Therefore, small-scale and large-scale regions 

contain the scales that experience an elongation process 

whereas the intermediate-scale region corresponds to the scales 

that experience a contraction mechanism. The elongation 

mechanisms in the small-scale and large-scale regions are of a 

totally different nature. In the small-scale region, the functions 

 t,de2  and  t,d'e3  are scale independent telling that the 

elongation mechanism is similar to the o ne of an elongating 

cylinder. In the large-scale region, both functions  t,de2  and 

 t,d'e3  remain scale dependent and this mechanism cannot be 

represented by an elongating cylinder. In fact, the scales 

belonging to the large-scale region are those that are created 

during the process. The scale creation is associated to scale-

dependent elongation process. 

The scales d1, d2 and d3 constitute characteristic scales of the 

capillary instability. They are determined from the 3-D analysis, 

i.e., from the function  t,d'e3 . Their temporal evolution is 

examined for the two wavenumbers k = 0.55 and k = 0.75. 
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Figure 6: Temporal evolution of the scale d3. 

 

Figure 6 presents the temporal evolution of the maximum scale 

d3 for the two wavenumbers. The scale d3 reports an exponential 

increase with time. The lines in the graph correspond to: 






























σ
j

t

t
expDd 813   (7) 

This temporal evolution corresponds to the one predicted by the 

first order theory due to Rayleigh [C]. The parameter  is equal 

to 0.026 and 0.031 for k = 0.55 and 0.75, respectively which is 

close to the ratio 0/Dj. The growth rate  is equal to 0.304 and 

0.296 for k = 0.55 and 0.75, respectively. Again, these values 

are very close to the wave number reported by Rayleigh linear 

theory, i.e., 0.318 and 0.338 for k = 0.55 and 0.75, respectively. 

Therefore, the maximum scale d3 shows a single dynamic that is 

the one described by the linear theory due to Rayleigh.  

The temporal evolution of the scale d2 is shown in Fig. 7. For 

both wavenumbers we see that the scale d2 increases with time. 

However, contrary to the scale d3, this evolution is a function of 

the wavenumber. Whereas the increase of d2 starts later for 

k = 0.75 but the increase rate for this wavenumber is much 

higher than for k = 0.55. The reason of this difference has not 

been identified so far and is under consideration. However, it 

illustrates that different dynamics manifest as the scale of 

observation decreases. This is confirmed by the scale d1. 

t (s)

0.000 0.002 0.004 0.006 0.008 0.010

Scale d2(t) (µm)

600

700

800

900

1000

k  = 0.55

k  = 0.75

 
Figure 7: Temporal evolution of the scale d2. 

 

The temporal evolution of the scale d1 is shown in Figs. 8 and 9 

for k = 0.55 and 0.75 respectively. As expected from Figs. 3 and 

4, this scale decreases with time. For both wavenumbers, the 

decrease of d1 follows three regimes that correspond to the three 

steps identified in Fig. 1. 
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Figure 8: Temporal evolution of the scale d1 (k = 0.55). The 

lines correspond to the equations shown in Table 1. 
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Figure 9: Temporal evolution of the scale d1 (k = 0.75). The 

lines correspond to the equations shown in Table 1. 

 

Regime 1 (0 < t < t*): This regime reports an exponential 

decrease of the scale d1 given by Eq. (8) (see Table 1). This 

dynamic is identical to the one described by the Rayleigh linear 

theory. However, contrary to what was obtained for the 

maximum scale d3, the growth rates for the scale d1 are far less 

than those predicted by the theory.  

Regime 2 (t* < t < t**): In this intermediate regime, the 

decrease rate of d1 has increased compared to the previous 

regime. The decrease in this regime follows a t2/3 dependence 

(Eq. (9) in Table 1). Such a dynamic was reported for the neck 

radius of a slow extending ligament ( t << 1) just before the 

breakup [8]. The same temporal dependence is observed on a 

liquid bridge when inertia forces control the surface tension 

contraction [10]. This result says that the contraction 

mechanism between two main swells during the second step of 

the capillary instability is controlled by inertia. Table 1 says that 

this regime lasts longer for k = 0.55 and that the scales involved 

in this mechanism are larger for this wavenumber.  

Regime 3 (t** < t < tBU*): In this last regime, the decrease rate 

of d1 has increased again compared to Regime 2. As shown by 
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Eq. (10) (Table 1), the scale d1 decreases linearly with time in 

this regime. A similar behaviour is observed on a contracting 

liquid bridge when the action of the surface tension is controlled 

by the viscous forces [10]. Furthermore, the self-similar 

solution of the pinching of an axisymmetric fluid neck also 

reports a linear dependence between the neck diameter and the 

time [11]. Regime 3 is therefore a visco-capillary regime. Note 

the closeness of Eq. (10) for the two wavenumbers that enforces 

the idea of a self-similar behaviour.  
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Table 1: Equations of the three regimes of variation of scale d1 identified in Fig. 8 and 9  
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Figure 10: Comparison of the elongation rates of the 2-D and 3-

D analyses 
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Figure 11: Figure 10: Comparison of the elongation rates of the 

2-D corrected and 3-D analyses, and from the scale d1. 

The detection of the above three regimes for scale d1 indicates 

that this scale is characteristic of the contraction and pinching 

off mechanisms that occur during the capillary instability. As 

suggested in [8], the existence of these regimes is linked to a 

modification of the flow during the process. Initially, the 

contraction impacts all the liquid volume, then limits to the 

liquid between two crests and finally concentrates on pinch-off 

zone. The fact that the multi-scale analysis allows detecting 

these three mechanisms wherever they occur is due to the global 

nature of the approach: all mechanisms are caught, but we do 

not have any information on their location. 

The scale distributions e2(d,t) and e3(d,t) presented in Figs. 3 

and 4 have revealed the presence of an elongation mechanism 

during the process. This mechanism is visible in the small-scale 

region. Furthermore, as noted above, since the functions 

 t,de2  and  t,d'e3  are scale independent, this mechanism is 

similar to the one observed on an elongating cylinder and can be 

categorized as a pure elongation mechanism. Thus, its 

elongation rate can be calculated with Eq. (6) for 2-D and the 3-

D analyses. The results are compared in Fig. 10. Both analyses 

agree on one point: the evolution of the elongation rate as a 

function of t/tBU is independent of the wavenumber k. However, 

the increase of the elongation rate in 2-D is much higher than 

the one in 3-D. This result is expected since any increase of 

e2(d,t) in the small-scale region is interpreted as elongation even 

if it is due to a decrease of the surface area ST(t). Therefore, the 

variations of e2(d,t) is not representative of a pure elongation 

process. To the contrary, an increase of -  t,d'e3  in the small-

scale region says that the variation of the eroded-system surface 

area as a function of the scale d increases with time suggesting 

the existence of an equivalent cylindrical structure whose 

diameter decreases. This corresponds to a pure elongation 

mechanism and the 3-D analysis correctly predicts its 

elongation rate. The presence of such mechanism does not mean 

that the whole system surface area increases. Indeed, Fig. 4 

shows that whereas -  t,d'e3  in the small-scale region 

increases, e3(d,t) decreases. Therefore, as expected for a 

capillary instability, the surface area of the system decreases. 

The small-scale region analysis performed here tells us that the 
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system surface area reduction is limited by a pure elongation 

mechanism.  

To correct the function e2(d,t) from the variation of ST(t), we 

consider the function L(d,t) = e2(d,t)ST(t), i.e., the length of the 

eroded system at scale d. It can be shown that the elongation 

rate becomes: 

 
 

 
 tS

tS

t,de

t,de

T

T


 
2

2  (11) 

This corrected elongation rate is compared with the 3-D 

analysis elongation rate in Fig. 11. We first note that the 

corrected elongation rate depends on the wavenumber. 

Furthermore, it also reports a higher temporal increase than the 

one reported by the 3-D analysis. This disagreement comes 

from the fact that any length variation is interpreted as 

elongation. However this is not the case. For instance, the 

rearrangement of the liquid as a cylinder with a constant 

diameter but an increasing length is not a pure elongation 

mechanism but will be interpreted as such. Thus the corrected 

2-D analysis still overestimates the pure elongation mechanism. 

All scales belonging to the small-scale region, i.e., scales less 

than d1, are involved in the pure elongation mechanism. 

Therefore the scale d1 is likely a characteristic of this 

mechanism. The elongation rate of a cylinder whose diameter 

evolves as d1(t) is considered. Its rate is given by: 

1

1

d

d
   (12) 

This elongation rate is plotted in Fig. 11 also. We see that the 

evolution of this rate is parallel to the one reported by the 3-D 

analysis in Regimes 1 and 2, i.e., when the pure elongation 

mechanism occurs. This result says that the variation of the 

scale d1 contains information on the pure elongation mechanism 

participating to the process of deformation and breakup.  

4. Conclusions 

The multi-scale approach used in the present work described the 

deformation of a liquid system by considering the temporal 

evolution of the amount of liquid covered by each scale. Its 

application to the capillary instability of a liquid ligament 

allows identifying three characteristic scales that divide the 

scale space in three regions. The small-scale region contains the 

scales that, in the favour of an elongation mechanism, cover 

more and more liquid during the process. The intermediate-

scale region contains the scales that cover less and less liquid 

volume because of a contraction mechanism. The large-scale 

region corresponds to the scales that cover more and more 

liquid since these scales have been created during the process. 

The created scales are therefore associated to an elongation 

mechanism.  

In each region, specific scale dynamics is found illustrating the 

involvement of different mechanisms. In the large-scale region, 

a single dynamic identical to the one described by Rayleigh 

linear theory [9] is identified. In the small-scale regions, three 

successive dynamics are found. They correspond to the 

contraction and pinch-off of a ligament neck as breakup is 

approached, i.e., the exponential regime, the inertia regime and 

the visco-capillary regime. The main difference between 

k = 0.55 and 0.75 is the duration of the second regime that is 

less for k = 0.75. The independence of the visco-capillary 

regime with the wavenumber sustains the self-similar behaviour 

at the final breakup step. Furthermore, it is observed the passage 

from one regime to another is always accompanied by an 

increase of the evolution rate of the scale d1.  

Because of the axisymmetric condition of the present problem, 

the 2-D and 3-D analyses agree on the determination of the 

characteristic scales. Furthermore, the 3-D analysis allows 

identifying the presence of a pure elongation mechanism during 

the whole process. This mechanism is related to the 

development of a liquid thread between the swells and the 

subsequent production of a satellite drop. It also limits the 

overall reduction of the system surface area. Whereas the 2-D 

analysis overestimates the action of this mechanism, it is found 

that the scale d1 delimiting the small-scale region reports an 

evolution rate that increases with time in an identical way as the 

pure elongation rate. Therefore, this specific scale contains 

information on the pure elongation mechanism. 

It is important to remind that all these results are obtained from 

a single measurement. This is due to the fact that the multi-scale 

description is a global approach. Therefore, all mechanisms can 

be detected. The counterpart of this is that the location of these 

mechanisms is not known.  
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