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Abstract 

This study employs DNS of two-phase flows to enhance primary atomization understanding and modelling to be 

used in numerical simulation in RANS or LES framework. In particular, the work has been aimed at improving the 

information on the liquid-gas interface evolution available inside the Eulerian-Lagrangian Spray Atomization (ELSA) 

framework. Even though this approach has been successful to describe the complete liquid atomization process 

from the primary region to the dilute spray, major improvements are expected on the establishment of the drop size 

distribution (DSD). Indeed, the DSD is easily defined once the spray is formed, but its appearance and even the 

mathematical framework to describe its creation during the initial breakup of the continuous liquid phase in a set of 

individual liquid parcels is missing. This is the main aim of the present work to review proposals to achieve a 

continuous description of the DSD formation during the atomization process. 

The attention is here focused on the extraction from DNS data of the behaviour of geometrical variable of the liquid-

gas interface, such as the mean and Gauss surface curvatures. A DNS database on curvature evolution has been 

generated. A Rayleigh-Plateau instability along a column of liquid is considered to analyse and to verify the 

capabilities of the code in correctly predicting the curvature distribution. A statistical analysis on the curvatures data, 

in terms of probability density function, was performed in order to determine the physical parameters that control 

the curvatures on this test case. Two different methods are presented to compute the curvature distribution and in 

addition, the probability to be at a given distance of the interface is studied. This approach finally links the new tools 

proposed to follow the formation of the spray with the pioneering work done on scale distribution analysis.  

Birth of drop size distribution 

A standard output expected from any atomization model or theory is the drop size distribution (DSD). There are 

several definitions of this function. Most generally, it is 𝐹𝑁(𝐷)  in such way that 𝐹𝑁(𝐷′)𝑑𝐷 is the number of droplet

per unit of volume with a diameter ∈ [𝐷′, 𝐷′ + 𝑑𝐷[ . In this case, it is the number diameter distribution (NDD) and it 

may be also normalized to define a probability density function 𝑃𝑁(𝐷).

The function 𝐹𝑁(𝐷) requires the possibility to count the number of droplets. Thus, it is necessary to separate the

liquid phase in a set of discrete elements. Usual atomization starts with a continuous liquid flow (for instance a liquid 

jet) and during the atomization process the splitting of the continuous liquid phase occurs. This phase of the 

atomization process can be associated to the so-called primary breakup. Once it is created, for fixed external 

conditions and generally considering the whole spray, the NDD may evolve towards  an asymptotic state, for which 

numerous theoretical and experimental works are reported in the literature [1]. To address more complex situations 

or to determine its function in space and time, a transport equation for the DSD is required and in the case of the 

𝐹𝑁(𝐷) this is the Williams-Boltzmann equation (WBE) [2].

Although the flow inside the injector as well as surface instabilities and the way to solve the WBE have been the 

subject of important researches, few works deal with the droplet generation step to estimate the initial DSD. One 

reason is the lack of data to justify any proposal and the other reason is the non-applicability of the NDD definition 

during the primary breakup. Indeed, considering a liquid jet before the detachment of a liquid parcel, the notion of 

a diameter cannot be reasonably introduced. However, considering an initial instability over a liquid surface, such 

unsteadiness will evolve in time and create wrinkles at a certain length scale that should be in some way related on 

a theoretical point of view to the diameter of the droplet that will be then generated. It is clear that a link between 

these two subsequent steps is still missing. Regarding the data in this transition zone during primary breakup, there 

have been great progresses both in experimental techniques and in numerical simulations.  
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The main goal of the present study is therefore the proposition of an innovative extended definition of the drop size 

distribution to be used all along the atomization process, leading to the so called Surface Curvature Distribution 

(SDF). The definition of the SDF will be first introduced and related to some characteristic geometrical properties of 

the liquid/gas interface, such as the mean and Gauss curvatures. Then, numerical simulations will be then used to 

extract its evolution on a fundamental breakup test case. The well-known Archer code [3], [4], where a combined 

VOF-Level set approach is used to capture the interface and a ghost-fluid method is applied to represent accurately 

the jump of variable across the liquid-gas interface, has been used to this end.  

The paper is structured as follows: the next section is devoted to the description of the SDF and to the introduction 

of a relation between the SDF and the NDF for a spherical droplet based on surface curvatures. In the second part 

of the paper, a Rayleigh-Plateau test case has been considered to determine the evolution of the two curvatures to 

show how the breakup process from a liquid jet to the final droplet can be directly described employing such surface 

geometrical properties. 

 

An extended definition of the drop size distribution 

The purpose of this section is to propose an extended definition of the drop size distribution that may applicable all 

along the atomization process including the primary breakup zone. Before looking at the DSD definition, it should 

be pointed out that the same problem appears to define a mean diameter: it is a moment of the NDD and therefore 

it can be defined only once the continuous liquid jet has been broken in a set of liquid droplets. From the pioneering 

work of Vallet and Borghi [5], [6] it is known that the definition of the mean diameter can be replace beneficially by 

the more general mean surface density Σ, that is the surface area per unit of volume. This quantity can be defined 

everywhere whatever is the liquid phase topology and, combined with the liquid volume fraction 𝛼, it gives the mean 

Sauter diameter once the spray is formed: 𝐷32 =
6𝛼

Σ
 . Recently, Essadki et al [7] used high order fractional moments 

of the DSD for disperse phase, where the size is given by the surface area of droplet, to recover some interface 

geometrical quantities already used in describing the gas-liquid interface in [9]. These quantities are the volume 

fraction, the mean surface density and the two averaged Gauss 𝐺 = 𝜅1 ∗ 𝜅2 and mean 𝐻 =
𝜅1+𝜅2

2
 curvatures, where 

𝜅1 and 𝜅2 are the two principal curvatures of the surface.  

To overcome the limits of the DSD in modelling a gas-liquid interface, some surface characteristics can be used 

since they should carry the information of the DSD which is hidden during the wrinkling process.  

The proposal here is to look at the curvature (𝜅) distribution along the liquid-gas surface. In this case the distribution 

of curvature is 𝐹𝑆(𝜅) and the 𝐹𝑆(𝜅′)𝑑𝜅 is the area of surface with a curvature κ ∈ [𝜅′, 𝜅′ + 𝑑𝜅[ . This leads to the 

definition of a surface curvature distribution (SCD). However, an accurate description of the interface cannot be 

restricted to one geometrical variable as it is often used in the DSD for disperse phase. Therefore, we use the 

Gauss and mean curvatures as phase-space variable, leading to a bi-variate SCD: 𝐹𝑆(𝐻, 𝐺). Once the spray is 

formed, the DSD is a particular case of 𝐹𝑆(𝐻, 𝐺) since for spherical droplets 𝜅1 = 𝜅2 = 2/𝐷 .  

Indeed, for a disperse phase of spherical droplets, the Gauss curvature can be simply expressed as  𝐺 = 4𝜋/𝑆, 

where 𝑆 = 𝜋𝐷2 is the droplet surface area. Therefore, the two functions  4𝜋/𝐺𝐹𝑆(𝐻 = √𝐺,𝐺) and  𝐹𝐷(𝐷)  are 

equivalents, since they count the probable number of droplets per volume and per radius or Gauss curvature. The 

link between the two distributions has been already generalized in [8] for non-spherical droplets by using some 

interesting topological properties of Gauss curvature.  

Therefore, considering that during primary atomization the liquid-gas interface undergoes different instabilities and 

deformation, the interface state can be described geometrically by the local curvatures. When the curvatures reach 

high values, the liquid breakup mechanism is activated and lead to generate droplets of diameter related to the 

curvatures of the previous interface state. Hence, the first proposal has been to carry the curvature distribution by 

the surface. However, any spray may be characterised by a volumetric distribution. For a spray, the DSD becomes 

𝐹𝑉(𝐷)  in such way that 𝐹𝑉(𝐷′)𝑑𝐷 is the liquid volume fraction of droplets with a diameter ∈ [𝐷′, 𝐷′ + 𝑑𝐷[ . This 

volumetric distribution can be also extended to any liquid topology, leading to the volumetric distance function 

distribution (V𝜑D), that can be a second proposal. It is defined by 𝐹𝑉(𝜑)  in such way that 𝐹𝑉(𝜑′)𝑑𝜑 is the volume 

fraction of flow that is at a distance 𝜑 from the interface, with 𝜑 ∈ [𝜑′, 𝜑′ + 𝑑𝜑[, 𝜑 is positive in the liquid phase and 

negative in the gas phase. With this definition the following relation stands: 

The gas volume fraction is 𝛼𝑔 = ∫ 𝐹𝑉(𝜑)𝑑𝜑
0

−∞
, the liquid volume fraction is 𝛼𝑙 = ∫ 𝐹𝑉(𝜑)𝑑𝜑

+∞

0
, and the mean surface 

density Σ = 𝐹𝑉(0). 

The V𝜑D gives the distribution of the flow with respect to the distance to the interface. The link with the DSD is not 

straightforward. However, this distribution can be clearly identified on a given geometric object and in particular for 

a spherical droplet. Indeed, this idea has been explored by Dumouchel and co-workers [12,13] with the concept of 

scale distribution, 𝐸3(𝑑). The definition of this function for a given object (for instance a droplet) is based on the 

total object volume 𝑉0  and the volume 𝑉(𝑑) defined by all points at a distance 𝑑 or greater to the object surface. 
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The scale distribution is given by 𝐸3(𝑑) =
(𝑉0−𝑉(𝑑))

𝑉0
. The link between the scale distribution and the V𝜑D can be 

express readily by 𝐸3(𝑑) =
𝐹𝑉(𝜑=𝑑)

𝛼𝑙
 . Dumouchel et al. have worked on experimental data in 2D [12] and more 

recently they have used 3D simulation (ICM + DNS) to extract 3D results [13]. A link must exist between the scale 

distribution or the volume fraction distribution with the curvature or at least an average curvature of the surface. 

This point is still under investigation inside our research group. 

 

First application of the definitions 

As a first step a very simple configuration corresponding to a Rayleigh-Plateau instability, where a set of droplet is 

created from an initial column of liquid, is here used to show how the surface curvatures and V𝜑D can be used to 

describe a breakup event. This is a standard test case for the code Archer that is known to give good results on 

this configuration. Two methods have been used to extract the curvature distribution. The first one is based on the 

distance function that is part of the numerical procedure in the resolution of the two-phase flow in Archer code. The 

normal to the surface �⃗� = −
∇⃗⃗ φ

|∇⃗⃗ 𝜑|
 is first calculated. Then, the matrix 𝑃 = 𝐼 − �⃗� �⃗� 𝑇 with 𝐼 the identity matrix, and the 

Hessian matrix 𝐻𝑚 =
𝜕2𝜑

𝜕𝑥𝑖𝜕𝑥𝑗
 are calculated in order to have the matrix 𝐺𝑚 = −

𝑃𝐻𝑚𝑃

|∇⃗⃗ 𝜑|
. Finally, the two principal 

curvatures 𝜅1 and 𝜅2 are obtained by : 

 𝜅1 =
𝑇+√2𝐹2−𝑇2

2
 and 𝜅2 =

𝑇−√2𝐹2−𝑇2

2
  

with 𝑇, the trace of the matrix 𝐺𝑚 and 𝐹, the Frobenius norm of the matrix 𝐺𝑚. For a more detailed explanation of 

the method, see [11]. In Archer, these curvatures are calculated on the center of the mesh cells, so in order to have 

the right curvatures on the interface, the curvature radius is corrected by the distance function which gives the 

distance from the center of the cell to the interface. 

The second one has been developed in [8], where the gas-liquid interface is discretized with a 2D triangulated mesh 

using the Marching Cube algorithm. The curvature is computed at each vertex of the created mesh, as spatial 

averages around this vertex, based on some results of discrete differential geometry [10].  Then, in order to eliminate 

the noise of the estimated curvatures, the authors of [8] used an adequate spatial-averaging process, which 

preserves some topological feature of the gas-liquid interface such as computing the droplet number from the bi-

variate SCD: 𝐹𝑆(𝐻, 𝐺), while filtering the noise. 

Finally, the first result on the V𝜑D have been obtained through the distance function.  All these concepts have been 

explored in a simple test case described in the next section before addressing more complex test cases up to the 

final atomization. 

 

Numerical Results 

The validation case used here is the Rayleigh-Plateau instability, which consists on the formation of droplets from 

an initial liquid jet due to surface tension with the surrounding gas. We computed a quarter of a cylinder and used 

symmetric boundary conditions in a computational box of 1,5.10−4 × 1,0.10−4 × 1,0.10−4 𝑚 with a 96 × 64 × 64 

mesh. The liquid and gas properties are the following ones:  

𝜌𝑙 = 1000 𝑘𝑔.𝑚−3                  𝜌𝑔 = 1 𝑘𝑔.𝑚−3                            𝜎 = 0,072 𝑘𝑔. 𝑠−2 

𝜇𝑙 = 1,0.10−3 𝑘𝑔.𝑚−1. 𝑠−1      𝜇𝑔 = 1,879.10−5 𝑘𝑔.𝑚−1. 𝑠−1 

The cylinder has a radius 𝑅 = 3,34.10−5 𝑚 and the initial perturbation, essential to observe the instability, has an 

amplitude of 10 % of the radius of the cylinder and a wavelength of 3.10−4 𝑚 (twice the length of the box). The initial 

conditions have been chosen in order to have a wave number satisfying 𝑘 𝑅 = 0,7 which correspond to the fastest 

growth rate. The two previous methods to extract the curvature distribution were tested (Figure 1) but no significant 

differences were observed, which shows that this case is well resolved with a high mesh resolution. 
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Figure 1. Top left : Rayleigh Plateau instability at 𝑡 = 1,88.10−4𝑠 ; Bottom left : Mean curvature in function of Gauss curvature 

with the first method (red curve represents 𝜅1 = 𝜅2 and the dotted line represents 𝐺 = 0)  ; Bottom right : Mean curvature in 

function of Gauss curvature with the second method (blue curve represents 𝜅1 = 𝜅2, red points represents the right part of the 

simulation and blue points, the left part) 

 
In the following figures, the mean and total curvatures are provided as dimensionless using the radius of the initial 

cylinder as reference length, whereas for the Gauss curvature the radius squared has been used to this end. The 

mean curvature of a sphere with a radius of 𝑑𝑥 is 21,4 and its Gauss curvature is 457,5. 

On Figures 6 and 7, the distance function 𝜑 is reported as dimensionless using 𝑑𝑥 as reference and the curves are 

shown between −𝑙𝑥 and 𝑙𝑥. The same validation case is used in these figures but with a 36 × 24 × 24 mesh sizing. 

The surface evolution of the Rayleigh-Plateau instability in different four time steps is shown in Figure 2, where it is 

possible to see the initial configuration (ta), the deformation of the cylinder (tb), the moment of the break-up (tc) and 

the final droplet's formation (td). It is now interesting to analyse the evolution of surface curvatures during this 

breakup process. 

It should be pointed out that when the cylinder is weakly deformed (Figure 6), in terms of PDF profile we are very 

close to the theoretical profile of a cylinder with a linear curve inside the liquid part. For the total curvature (Figure 

5 left) and Gauss curvature (Figure 4 left) cumulative, a step profile at values corresponding to this cylinder is 

obtained. Furthermore, on the graph showing mean curvature in function of Gauss curvature (Figure 3 top left), all 

the points are around the vertical line representing the cylinder.  

Then, when such cylinder is deformed (tb), we observe negative values for Gauss curvature (Figure 4 right) 

corresponding to all the saddle points in the middle of the cylinder. This portion of cylinder is visible on the mean 

and Gauss curvatures graph (Figure 3 top right) and it is the arc formed by the points. Besides, on this graph, the 

points, which represent the big part of the cylinder, get closer to the red curve corresponding to a sphere.  

When the break-up happens (tc), the previous arc breaks up and two sets of points appear (Figure 3 bottom left), 

one of which is located on the red curve. These points correspond to the big droplet. Indeed, the mean curvature is 

approximately 0.5 and the Gauss curvature about 0.25 which correspond to a radius twice as big as the initial jet 

radius. The other points, located below the red curve, correspond to the small ellipsoid. Here, the mean curvature 

is quite high because of the small thickness and the Gauss curvature is weaker because the curvature is close to 

zero along the length. The big droplet is characterised by the step on the total curvature cumulative (Figure 5 right) 

and the small ellipsoid by all the high negative values. It should be pointed out that such break-up process is mainly 

evident on the curvature plot since small variations on the interface geometry can lead strong changes in the 

curvature values. 

Finally, when the two droplets are formed (td), for the mean and Gauss curvatures graph (Figure 3 bottom right) 

most of the points are on the red curve, which represents the spheres. The points corresponding to the big droplet 

are located approximately at the same place than the previous time. The points corresponding to the small droplet 

are those having an higher curvature because of, obviously, its small radius. On Figure 7, PDF profile becomes 

parabolic in the liquid part, as expected for spheres, with higher values of the distance function because the biggest 

droplet is bigger than the initial cylinder.  
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Figure 2. Top left : Rayleigh Plateau instability at 𝑡𝑎 = 3,92.10−7𝑠 ; Top right : Rayleigh Plateau instability at 𝑡𝑏 = 1,49.10−4𝑠 ; 

Bottom left : Rayleigh Plateau instability at 𝑡𝑐 = 1,86.10−4𝑠 ; Bottom right : Rayleigh Plateau instability at 𝑡𝑑 = 2,03.10−4𝑠  

 

 

 

 

 

 

 

 

Figure 3. Mean curvature in function of Gauss curvature (Top left : at 𝑡𝑎 ; Top right : at 𝑡𝑏 ; Bottom left : at 𝑡𝑐 ; Bottom right : at 𝑡𝑑 

(red curve represents 𝜅1 = 𝜅2 so a sphere and the dotted line represents 𝐺 = 0 so a cylinder) 
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Figure 5. Cumulative of the total curvature (Left : at 𝑡𝑎 ; Right: at 𝑡𝑐) 

 

 

 

 

 

 

 

 

 

.  

Figure 6. Top left : Rayleigh Plateau instability at 𝑡𝑎 ; Bottom left : pdf of the distance function (red curve represents the initial 

pdf profile for a cylinder) ; Bottom right : cumulative of the distance function (red curve represents the initial cumulative profile for 

a cylinder) ; the dotted line separates liquid (positive values) and gas (negative values) 

Figure 4. Cumulative of the Gauss curvature (Left : at 𝑡𝑎 ; Right : at 𝑡𝑏) 
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Figure 7. Top left : Rayleigh Plateau instability at 𝑡𝑑 ; Bottom left : pdf of the distance function (red curve represents the initial 

pdf profile for a cylinder) ; Bottom right : cumulative of the distance function (red curve represents the initial cumulative profile for 

a cylinder) ; the dotted line separates liquid (positive values) and gas (negative values) 

 

Conclusions 

 

This study shows how DNS of two-phase flows can be employed to improve understanding and modelling of primary 

atomization to be then used in RANS or LES framework. In particular, the study is aimed at enhancing the 

information available in ELSA framework through the introduction of liquid/gas interface curvatures. Firstly, on a 

mathematical point of view, an extended definition of the drop size distribution to be used all along the atomization 

process is proposed, leading to the so called surface curvature distribution. Then, the extraction of surface 

curvatures is shown for a simple Rayleigh-Plateau test case before to go on with more complex and computationally 

costly tests. Two different methods to extract the curvature distributions are tested, even if they do not here 

determine appreciable differences. The evolution of Gauss and mean curvatures is analysed in detail in order to 

show how the breakup process from a liquid jet to the final droplet can be easily described in terms of such surface 

geometrical properties. 

 

Nomenclature 

 

D Droplet diameter [m] 

G Gauss curvature [m-2] 

H Mean curvature [m-1] 

R Cylinder radius [m] 

 

 

Greek 

 

α Liquid volume fraction [-] 

Σ Mean surface density [m-1] 

κ Principal curvature [m-1] 

φ Distance function from the interface [m] 

ρ  Density [kgm-3] 
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μ  Viscosity [kgm-1 s-1]  

σ Surface tension [kgs-2] 

 

Subscripts 

 

l Liquid  

g Gas 

 

Acronyms 

 

DNS Direct Numerical Simulation 

DSD Drop Size Distribution 

ICM Interface Capturing Method 

LES Large Eddy Simulation 

NDD Number Diameter Distribution 

RANS Reynolds Average Navier Stokes 

SCD Surface Curvature Distribution 

V𝜑D Volumetric distance function Distribution 
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