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ABSTRACT 

A multi-scale approach to investigate liquid atomization 
processes is introduced. It describes the liquid system by the 
scale distribution whose determination is inspired from the 
Euclidean Distance Mapping used to measure the fractal 
dimension of a contour. The scale distribution is introduced in 
2D and in 3D and applications from previous investigations are 
presented. The 2D applications are performed on experimental 
images and the 3D applications are performed on results 
obtained from Direct Numerical Simulation. The multi-scale 
analysis allows identifying and quantifying the mechanisms 
responsible for the interface evolution according to the scale. 
Among other results, the analyses presented here demonstrate 
the improvement of the atomization process when an elongation 
mechanism contributes to the thinning of the small structures. 
The multi-scale tool also provides new metrics that may be used 
to validate simulation results. An example of this is presented 
and discussed. Finally, the paper evokes several approaches to 
implementing the scale-distribution concept to improve or build 
new models.  
INTRODUCTION 

In many domestic or industrial applications, flows of 
droplets of liquids are used. It is known that the efficiency of 
these applications depends on the characteristics of these drops 
including their size, velocity, spatial density, etc. Investigations 
to understand, model, simulate and control liquid spray 
formation are therefore very much needed.  

The most encountered process to produce a spray consists 
of ejecting a liquid flow into a gaseous environment. As soon as 
the liquid flow issues from the injector nozzle, deformation 
appear at the liquid interface. These deformations grow in space 
and time and eventually result in the ejection of liquid fragments 
on which the whole process may reiterate. The atomization 
process stops when the initial flow is fully transformed into a 
flow of droplets small enough to be stable, i.e., a spray. 

The experimental investigations of atomization processes 
are based on visualizations and image analysis and often report 

measurements of characteristic features such as a spray angle, a 
breakup length, a mean diameter of the drops… Although these 
quantities are important, they don’t provide a complete 
description of the process. Liquid atomization is a process of 
energy exchange between the interface and the two fluids. The 
liquid-gas interface stores energy, which, per unit mass, is equal 
to the product of the specific-surface-area (surface area per unit 
mass) and the surface tension [1]. The specific-surface-area is 
conveyed by the shape of the liquid system, the shape that 
continuously varies during the atomization process. The 
profusion of visualization approaches available in the literature 
[2] points out the complexity of this shape. Attempts of using the 
fractal concept developed to characterize the tortuosity of 
complex contours [3-5] have been performed to characterize this 
complexity [6-8]. Among other results, it was pointed out that 
atomizing liquid systems cannot be fully described by a single 
fractal dimension and that the scale range representative of the 
whole liquid system shape is wider than the one where self-
similarity is observed. Thus, the traditional fractal concept must 
be replaced by a multi-scale description approach where the 
fractal dimension becomes a scale-dependent function. The 
notion of scale distribution has been introduced for this purpose.  

The multi-scale description tool based on the measurement 
of the scale distribution is introduced. Coming from previous 
investigations, applications of this approach on experimental and 
simulated results are presented and discussed. They demonstrate 
that such a multi-scale analysis of the atomization process allows 
identifying the physical mechanisms responsible for the interface 
evolution according to the scale. Specific attention is paid on the 
importance of the mechanisms at small scales. This paper shows 
to which extend the multi-scale approach can help 
characterizing, understanding and modelling liquid atomization 
processes. 
THE MULTI-SCALE DESCRIPTION 

The multi-scale analysis describes the liquid system by the 
cumulative scale function En(d) where d is the scale of 
observation. This function is obtained by applying successive 
erosion operations to the liquid system. An erosion operation is 
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illustrated in Fig. 1 for a 2-D system. Figure 1-left shows the 
initial system, which has a 2-D total surface area noted S2T. The 
system is eroded by circular structuring elements with a diameter 
d. The eroded system (dark-gray area in Fig. 1-right) has a 
surface area noted S2(d). The erosion operation is applied for d 
varying from 0 to infinity and the cumulative surface-based scale 
distribution E2(d) is constructed as: 

 
   

T
T

S
dSSdE

2
222

  (1) 
 
For d = 0, S2(d) = S2T. For a sufficiently large scale, the 

erosion operation removes all the system and the remaining 
surface area S2(d) = 0. Therefore in the range d[0; ∞[, E2(d) 
monotonously increases from 0 to 1. The first derivative of E2(d) 
with respect to the scale is the surface-based scale distribution 
e2(d): 
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This derivative is equal to the ratio of the perimeter length 

L(d) of the eroded system at scale d on twice S2T. 
The extension of this definition in 3-D is straightforward. In 

this case, the system is characterized by its total volume VT, the 
erosion operation is performed with a sphere of diameter d and 
the cumulative volume-based scale function 
E3(d) = (VT – V(d))/VT involves the volume V(d) of the eroded 
system at scale d. The first derivative of E3(d) is the volume-
based scale distribution e3(d). This function is equal to the ratio 
of the 3-D surface area S3(d) of the eroded system divided by 
twice the system total volume: 
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The distributions en(d) (n = 2, 3) are monotonously 

decreasing functions, their dimension is the inverse of a length, 
and, they are normalized, i.e.,   1d

0
 dden . Note that e3(0) is 

similar to the specific-surface-area introduced by Evers [1]. 
The scale distribution can be mathematically established for 

simple systems. For a sphere of diameter D, we obtain: 
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For a cylinder of diameter D and by considering the lateral 

surface only, i.e., the two circular ends are not counted, we 
obtain: 
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In Eqs. (4) and (5), n = 2 or 3 according to the dimension of 

the description. The diameter D of these systems is equal to the 
maximum scale dmax defined as the smallest scale for which 
En(d) = 1 and en(d) = 0. 

 

   Fig. 1: Illustration of an erosion operation. Left: Initial 2-D 
system. Its total surface area is noted S2T; Right: Erosion at 

scale d. The light gray strip is removed. The eroded system has 
a surface area noted S2(d) (dark gray area) 
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 Fig.2: Temporal evolution of the scale distribution of a thinning 
cylindrical ligament: Left – e2(d,t), Right – e3(d,t) 

 
It is instructive to consider the case of a thinning cylindrical 

ligament, i.e., a cylinder with a diameter D(t) that decreases with 
time. The temporal evolution of the scale distribution en(d,t) 
calculated from Eq. (5) are shown in Figs. 2. The scale 
distributions e2(d,t) are successive step functions whereas the 
scale distributions e3(d,t) are successive linear functions. As t 
increases, the characteristic features of this mechanism are a 
continuous increase of e2(d,t), a continuous decrease of the scale 
derivative     ddt,ddet,d'e 33   and a scale independence of 
these two functions. e3(0,t) indicates a constant increase of the 
specific-surface-area.  
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Combining the quasione-dimensional continuity equation 
provided by Stelter et al. [9] together with the fact that the section 
of the cylinder is constant along the axial direction z, we obtain 
the rate of stretching   , i.e.:  
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where v designates the longitudinal velocity. Considering 

Eqs. (4) and (5), we can express the stretching rate   of the 
thinning cylinder as a function of the scale distributions: 
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where the dot indicates a temporal derivative and the prime 

a scale derivative. For a thinning cylindrical ligament, the 
stretching rate is of course independent of the scale d.  

From a physical point of view, the thinning of a liquid 
ligament can be due to an elongation mechanism or a contraction 
mechanism. In the first case, the ligament is elongated by an 
external constraint and its volume is constant. In the second case, 
the contraction is driven by surface tension forces and expulses 
liquid out of the ligament whose volume therefore decreases. If 
for both mechanisms the specific-surface-area increases, the 
absolute amount of surface area actually increases during the 
elongation and decreases during the contraction. In the second 
case, the reduction of the ligament diameter is not compensated 
by an increase of its length. Both mechanisms are associated to 
a positive stretching rate and the only way to dissociate them 
from each other is to get an information on the temporal variation 
of the ligament volume. 
APPLICATIONS ON EXPERIMENTAL ATOMIZATION 
PROCESS 

This section presents two examples of the use of the multi-
scale approach to analyze experimental images of a liquid 
atomization process. The first example concerns the behavior of 
elongated liquid ligaments and the second one considers a 
turbulent liquid jet issuing from a gasoline direct injector (GDI).  

 
Elongated liquid ligaments 
The elongated liquid ligaments are those developing during 

the atomization of a turbulent liquid sheet. The experiment work 
(detailed in [10]) consisted in visualizing the behavior of the 
ligaments with a high-speed camera (Phantom V12, 25000 
frames/s) in a shadowgraph configuration. Three liquids with a 
surface tension  ranging from 38 to 70 mN/m were used. For 
each liquid, several ligaments were detected and analyzed. 
Figure 3 shows an example of the temporal evolution of one 
ligament. The elongation of the ligament is recognized by the 
constant increase of its length during time. Being produced by a 
turbulent liquid sheet, the ligament is deformed at initial time.  

Image analyzing tools are applied to measure the scale 
distribution e2(d,t). It first consists in determining the location of 

separation between the ligament and the bulk when they are still 
in contact. This is done by hand (see the arrow in Fig. 3). Second, 
the ligament contour is determined at each time and the 
corresponding scale distribution is measured. (Refer to [10] for 
details). 

 

 Fig. 3: Temporal evolution of an atomizing water ligament into 
air. Time gap between two consecutive images 80 µs. Spatial 
resolution 10.36 µm/pixel. The arrow indicates the point of 

separation used to isolate the ligament [10] 
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 Fig. 4: Temporal evolution of the scale distribution e2(d,t) 
( = 0.0070 N/m).  

 
Figure 4 shows an example of the temporal evolution of the 

scale distribution obtained for one ligament of water ( = 0.0070 
N/m). As mentioned above, the distribution e2(d,t) is a 
continuous decreasing function in the scale space. At t = 0, 
e2(d,t) resembles to a smoothed step function. The similarity with 
a step function reveals the global ligamentary shape of the liquid 
system and the smoothed feature indicates that the ligament is 
perturbed. (Indeed, as shown in Fig. 2-left, a non-perturbed 
cylindrical ligament reports a stiff step function.) At the final 
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time (280 µs in Fig. 4), the scale distribution characterizes the 
few drops produced after the breakup of the ligament. 

Globally speaking, Fig. 4 reports an increase of e2(0,t) with 
time revealing the presence of a thinning mechanism as shown 
in Fig. 2-left. In the meantime, e2(d,t) increases with time in the 
large scale region (d > 130 µm) and dmax increases. This behavior 
demonstrates the production of bigger structures and is attributed 
to the presence of a thickening mechanism. Since the distribution 
is normalized, the combination of the thinning and thickening 
mechanisms imposes a decrease of e2(d,t) with time for the 
medium scale range. The thinning mechanism at small scales and 
the thickening mechanism at large scales are reported for each 
ligament. They are clearly dependent on the liquid surface 
tension. For instance, e2(0,t) increases more with time when the 
liquid surface tension decreases and the final scale distribution 
characterizing the set of droplets evolves from a linear to a 
convex function. Considering Eq. (4), this latter observation says 
that all drops produced have the same size when the surface 
tension is high. 

The behavior of the ligaments actually results from the 
competition between two mechanisms: the thinning mechanism 
imposed by the initial ligament elongation and the thickening 
mechanism resulting from the development of a capillary 
instability. The multi-scale analysis allows quantifying this 
competition. Using Eq. (7), the initial elongation rate is 
evaluated by: 
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where ti is the initial time. The characteristic time te of the 

initial elongation mechanism is therefore te = 1/(0,ti). The 
capillary instability of a cylindrical ligament is a surface tension 
driven mechanism whose characteristic time t is given by 
(Rayleigh, 1878): 
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where L is the liquid density and D(ti) a characteristic 

length of the initial ligament. This characteristic length is the 
inverse of the scale distribution, i.e., D(ti) = 1/e2(0,ti). The 
behavior of the ligaments depends on the ratio of the capillary 
characteristic time on the elongation characteristic time 
introducing a new Weber number Wei, i.e.: 
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It is found that when Wei < 0.03, the capillary instability 

dominates the ligament behavior and the surface tension is high 
enough to oppose any interface increase induced by the 
elongation mechanism. The resulting drops have similar size. 

When Wei > 0.03, the initial elongation mechanism is strong and 
the surface tension doesn’t oppose to the interface creation it 
induces. Breakup occurs at smaller and smaller liquid fragments 
and droplets with a wider range of diameter are produced. 
Therefore, an effective elongation mechanism damps the surface 
tension mechanism, delays the breakup process and increases the 
atomization efficiency. This agrees with Marmottant and 
Villermaux’s findings [11] on the behavior of static laminar 
stretched ligaments.  
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 Fig. 5: Comparison between the experimental and the 
mathematical (Eq. (12)) scale distribution of the final droplets 
produced by individual ligaments (W:  = 70 mN/m; WE10:  = 44 mN/m; WE15:  = 38 mN/m) 

 
In the same study, Marmottant and Villermaux [11] also 

showed that the diameter of the droplets produced by the 
atomization of the ligaments was distributed according to the 
following pdf distribution: 
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where D10 corresponds to the mean diameter, the parameter , which has no dimension, controls the width of the distribution 

(it decreases when the width of the distribution increases), and  
is the Gamma function. Since one ligament produces few 
droplets (see Fig. 3 for instance), the use of Eq. (11) required a 
statistical experimental distribution obtained from the analysis of 
a high number of ligaments. This is not necessary anymore if the 
scale distribution is used since this function is always continuous 
even if the system is composed of few droplets. We can 
demonstrate that the scale distribution of a set of spheres whose 
diameters are distributed according to Eq. (11) is: 
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where (x,y) is the incomplete gamma function. The 

parameters D10 and  were determined for each ligament. Beside 
the fact that the agreements between the measurements and Eq. 
(12) were always good (see examples in Fig. 5), a strong 
correlation was obtained between the parameter  and the Weber 
number Wei; i.e.: 

 

iWe
1  (13) 

 
This correlation illustrates the fact that an increasing 

elongation mechanism (Wei increases) promotes the production 
of smaller droplets ( decreases). The multi-scale description of 
the behavior of deformed and elongated ligaments demonstrated 
the importance of the initial elongation mechanism on the 
atomization efficiency and showed an interesting alternative to 
represent and model fragmented liquid system without statistical 
requirements.  

 
GDI turbulent jets 
The details of the experimental work described in this 

section are available in Dumouchel et al. [12]. The GDI device 
of this second experiments has three identical and cylindrical 
discharge orifices (diameter Dor = 250 µm). The turbulent jet 
issuing from one orifice is considered only. The liquid used is 
Shellsol D40 whose physical properties are closed to those of 
gasoline. In order to ensure a visible atomization process, the 
injection pressure is restricted to [0.1 MPa; 2.5 MPa]. The GDI 
device is conceived to work in transient conditions and is 
equipped with a needle that controls its opening and closing. The 
investigation concentrates on the jet behavior issuing from the 
injector during the fully open stage only. Contrary to the previous 
study, the approach is statistical, i.e., one image is taken per 
injection during 250 consecutive injections and the mean 
behavior of the jet is investigated. A shadowgraph optical 
arrangement with a spatial resolution equal to 5.8 µm/pixel is 
installed. An example of the image is shown in Fig. 6-Left. The 
liquid jet is not laminar because of the complex internal 
geometry of the injector that imposes drastic flow deflections 
and stresses. Some of the initial perturbations grow and structure 
the jet evolution. This atomization process shows the production 
of transverse ligaments and the transformation of the bulk as a 
ligament network. When the injection pressure increases, more 
ligaments are produced. For the highest injection pressures, the 
bulk flow is surrounded by droplets and the jet liquid core is 
more indented.  

Image analyzing tools are applied to measure the scale 
distribution. The images are orientated so that the jet appears 
vertical. The temporal description of the atomization process is 
performed on the reoriented images by analyzing a portion of the 
liquid system delimited by a rectangular analyzing window, and 
by sliding this window from the top down to the bottom of the 
image. The position h of the analyzing window is converted into 
an equivalent time t = h/Vq where Vq is the jet mean velocity 

otherwise measured (Fig. 6-Right). This treatment is performed 
on the 250 images and a temporal evolution of the mean scale 
distribution is obtained for each injection pressure.  

  Fig. 6: Left – Image of the turbulent jet at 0.5 MPa (6x8 mm); 
Right – Local measurement of the scale distribution; The 

rectangle represents the analyzing window. h: position of the 
analyzing window, Equivalent time t = h/Vq where Vq is the jet 

mean velocity 
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 Fig. 7: Temporal evolution of the scale distribution of the 
turbulent jet (Injection pressure Pi = 0.5 MPa) 

 
Figure 7 shows the temporal evolution of the scale 

distribution obtained for Pi = 0.5 MPa. Similar results are 
found for the other injection pressures. At the smallest time, the 
scale distribution resembles a step function saying that the 2D 
perception of the jet is close to the one of a cylinder. The smooth 
decrease in the small scale range ([0 µm; 100 µm]) and in the 
large scale range ([400 µm; 600 µm]) result from the presence of 
textural (located on the interface) and structural (concerning the 
bulk flow) perturbations, respectively. As time goes, Fig. 7 
shows an increase of e2(d,t) in the small scale range, a decrease 
of e2(d,t) in the large scale range and a continuous decrease of 
the scale dmax. These variations are the characteristic features of 
a thinning mechanism. Contrary to the case of a cylindrical 
ligament (see Fig. 2) this thinning mechanism is scale dependent. 
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The stretching rate      tdetdetd ,,, 22  at scale d = 0 
characterizes the dynamic of the interface variation imposed by 
the thinning mechanism. The associate characteristic time 
1/(0,t) is shown as a function of time for several injection 
pressures in Fig. 8. This figure shows the existence of two phases 
in the atomization process. During the first phase, the thinning 
characteristic time is constant. It decreases with the injection 
pressure: it has been otherwise found that   28101 .Ret,   
where Re is the issuing Reynolds number. This reveals the 
dominant influence of the liquid jet turbulence on the initial 
stretching mechanism. During the second stage, the thinning 
characteristic time linearly increases with time denoting a less 
and less effective mechanism, i.e., a continuously decreasing 
specific-interface-length creation. We see that the rate of 
increase in this second stage is independent of the injection 
pressure meaning that it is not controlled by the jet dynamic 
anymore. The time-dependent version T(t) of the characteristic 
capillary time defined by Eq. (9) is introduced: 
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



3tDtT L  (14) 

 
where D(t) = 1/e2(0,t). T(t) is calculated and plotted in Fig. 

8. We see that the passage from phase 1 to phase 2 always occurs 
when the characteristic capillary time becomes smaller that the 
characteristic stretching time. Therefore, during the phase 2, the 
stretching mechanism is controlled by the surface tension forces 
explaining why its dynamic becomes independent of the 
injection pressure.  
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 Fig. 8: Temporal evolution of the characteristic time of the 
thinning mechanism at d = 0 and comparison the characteristic 

capillary time (several injection pressures). 
 
In Fig. 7, the atomization process has been described as a 

thinning mechanism whose impact on the interface evolution 
follows two dynamics (Fig. 8). This thinning mechanism splits 
the scale space in two regions: the small scale region covering 

the scales for which the stretching rate is positive, and the large 
scale region covering the scales for which the stretching rate is 
negative. This space separation introduces a characteristic scale, 
namely, d1, which is the smallest scale for which: 

   012 ddt,de  (15) 
 
A thinning mechanism creates small scale fragments and 

slims large scale structures. This continuous mechanism imposes 
a temporal decrease of the scale d1. This is illustrated in Fig. 9 
for several pressures. The temporal decrease of d1 is stiffer when 
the injection pressure increases. Furthermore d1 decreases when 
the injection pressure increases. This illustrates the fact that a 
prompt thinning mechanism improves the atomization efficiency 
since it enhances the production of small liquid fragments before 
the breakup mechanism occurs. The beneficial influence of a 
rapid and strong initial thinning mechanism identified here is 
similar to the one observed on the elongated ligaments presented 
in the previous section. 

Figure 9 also evidences a change of dynamic of the scale 
d1(t) (the dash lines show this change for Pi = 0.6 MPa). These 
dynamics correspond to the two phases of the atomization 
process identified in Fig. 8. Thus, the scale d1(t) is sensitive to 
the physical mechanism controlling the small scale thinning 
process. 
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 Fig. 9: Temporal evolution of the characteristic scale d1(t). (Several injection pressures. The dash lines visualize phase 1 
and 2 of the atomization process for the Pi = 0.6 MPa. The 
blue line shows the d1(t) obtained from the DNS simulation) 

APPLICATIONS ON SIMULATED ATOMIZATION 
PROCESSES 

Thanks to recent developments, the direct numerical 
simulation (DNS) now achieves close reproduction of liquid 
atomization processes. Furthermore DNS allows an independent 
control of the initial conditions and returns a 3D information that 
is not reachable from experiments so far. It opens an alternative 
way of investigation, and, in particular, it allows performing 3D 
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multi-scale analyses. Two examples are presented in this section, 
namely, the capillary instability of a ligament and the 
atomization of a turbulent jet. 

Developed in the CORIA laboratory, the DNS code 
ARCHER used in this paper is mainly devoted to multi-phase 
flows. (Details on this code can be found in [13, 14].) The two-
phase flow is modelled by a single set of incompressible Navier-
Stokes equations with variable density and viscosity, and 
interfacial forces. These equations are coupled with the transport 
equation of the phase function C:  

 
0U.  (16) 

   st
T FUU.gpU.Ut

U 


 
   (17) 

0
 C.Ut
C  (18) 

 
In ARCHER solver, the phase function is modelled with 

both Volume Of Fluid and Level Set methods, in the CLSVOF 
framework. Jump conditions across the interface are taken into 
account with the Ghost Fluid approach. These methods are 
coupled with a projection method to solve the Navier-Stokes 
equations on a staggered grid. To treat the convective derivative 
in Eq. (17) we used WENO5 scheme and 2-order central 
difference scheme for other. The time integration is performed 
with RK3TVD scheme. All details of these techniques, and how 
Eqs. (16-18) are solved, were presented in previous works [13, 
14].  

 
The capillary instability 
The multi-scale analysis of the simulated capillary 

instability summarized in this section is detailed in [15]. The 
capillary instability manifests on a cylindrical ligament subjected 
to disturbances that induce surface displacements and generate a 
gradient of surface tension forces. Under certain conditions, the 
pressure distribution caused by these gradients generates internal 
flows that concentrate the liquid in certain regions to the 
detriment of others and rearrange the ligament as a succession of 
crests and necks. This process continues until the ligament 
diameter at the necks is so small that a breakup occurs and 
produces one drop for each swollen region. Several complete 
reviews on the investigations dedicated to this topic are available 
in the literature [16-19]. 

The capillary instability is calculated for a cylindrical 
ligament of water into air with a constant initial diameter 
Dj = 666 µm. An initial sinusoidal perturbation is applied. Its 
amplitude is fixed (0 = 17 µm, 0/Dj = 0.025) but eight values 
of the non-dimensional wavenumber k (= Dj/ where  is the 
perturbation wavelength) are considered, namely, 0.55, 0.60, 
0.65, 0.69, 0.75, 0.80, 0.88, 0.95.  

The simulation result for k = 0.55 is shown in Fig. 10. The 
evolution of the ligament from t = 0 to the breakup time tBU 
(= 8.13 ms for this case) undergoes three distinct steps. First (left 

column in Fig. 10), the ligament deformation increases in 
amplitude keeping a sinusoidal shape. Second (middle column in 
Fig. 10), the deformation of the ligament is not sinusoidal 
anymore. Two necks appear and a liquid thread develops 
between the main swells. Third (right column in Fig. 10), the 
necks do not travel anymore: they impose a local high-pressure 
that induces a pinch-off mechanism until breakup occurs. A 
similar behavior was observed for every k. These results are in 
agreement with previous calculations conducted in similar 
configurations [20]. 

 Fig. 10: DNS result: Temporal evolution of the ligament for 
k = 0.55 
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 Fig. 11: Temporal evolution of the volume-based scale 
distribution e3(d,t) (k = 0.55) 

 
The volume-based scale-distribution is calculated from 

images similar to those shown in Fig. 10 and by assuming that 
the ligament is axisymmetric at all times. This assumption is 
reasonable in the present context because axisymmetric 
disturbances are unstable only [21]. The temporal evolution of 
the scale distribution e3(d,t) for k = 0.55 is shown in Fig. 11 
where a thickening mechanism at large scales and a thinning 
mechanism at small scales are observed. The thickening 
mechanism is recognized by a continuous increase of the 
maximum scale dmax. The thinning mechanism in the small scales 
is recognized by a continuous temporal decrease of the scale 
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derivate  t,d'e3 . Furthermore, since  t,d'e3  appears 
independent of the scale, this mechanism is similar to the 
thinning of a cylindrical ligament. The characteristic scale d1(t) under which the stretching rate is positive is determined as a 
function of time. In 3D, this scale is defined as (see Eqs. (7) and 
(15)): 

   013 ddt,d'e  (19) 
 

Time t (s)
0.000 0.002 0.004 0.006 0.008

Scale d1 (µm)

0
100
200
300
400
500
600
700

Sim.Reg. 1Reg. 2Reg. 3

k  = 0.69

t* t**
 Fig. 12: Temporal evolution of the characteristic scale d1(t) (Lines are the mathematical representation of the three regimes) 

 
An example of d1(t) is shown in Fig. 12 (k = 0.69). We see 

that d1(t) decreases according to three regimes which 
corresponds to the three steps identified in Fig. 10. In regime 1, 
d1(t) reports an exponential decrease with time similar to the one 
reported by the linear theory due to Rayleigh [21]. In regime 2, 
d1(t) decreases as ( t2/L)1/3 and in regime 3, d1(t) decreases as 
( t/µL). The dynamics in regimes 2 and 3 have been reported in 
the literature for the pinch-off mechanism at breakup [22] and 
the liquid-bridges contraction [23]. The existence of these three 
regimes demonstrates an evolution of the thinning mechanism 
observed at small scales. 

The thinning mechanism at small scales can be 
characterized by the stretching rate   introduced by Eq. (7). This 
rate has been calculated for every wavenumber and the results 
are presented in Fig. 13 as a function of the ratio t/t* where t* is 
the time at which the regime 2 begins (see Fig. 12). Figure 13 
shows a continuous increase of the stretching rate for all 
wavenumber. This is actually coherent with the fact that the 
thinning mechanism is representative of the creation of smaller 
and smaller liquid structures and that this phenomenon actually 
lasts until breakup occurs. Figure 13 also shows that the 
stretching rate increase when the wavenumber increases. The 
impact of the thinning mechanism on the specific-surface-area 
of the ligament can be seen in Fig. 14 that shows the temporal 
evolution of e3(0,t) as a function of t/t*.  

The specific-surface-area e3(0,t) first increases, reaches a 
maximum and then decreases to a final value smaller than the 

initial one. This latter point is a characteristic feature of the 
capillary instability which is known to reduce the total amount 
of surface area. The increase of the specific-surface-area 
corresponds to regime 1 (t/t* < 1) and the maximum specific-
surface-area correlates with the value of the stretching rate. The 
thinning mechanism during regime 1 produces interface: it is 
therefore an elongation mechanism. During regimes 2 and 3, the 
specific-surface-area decreases: the thinning mechanism 
becomes a contraction mechanism driven by surface tension 
forces. In regime 2, this contraction mechanism is controlled by 
inertia; in regime 3 it is controlled by viscosity. This scenario has 
been confirmed by a model that is not presented here. 
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 Fig. 13: Stretching rate at small scales for all wavenumbers.  
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 Fig. 14: Temporal evolution of the specific-surface-area (five 
wavenumbers) 

 
The multi-scale analysis demonstrates the existence of an 

elongation mechanism at small scale even for the case of a 
capillary instability. Once again, it is found that this elongation 
mechanism is beneficial for the atomization. Indeed, we see in 
Fig. 14 that for k = 0.88, the elongation mechanism is the more 
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efficient since the maximum of e3(0,t) is the highest and the 
corresponding loss of specific-surface-area is the smallest. It can 
be added here that the characteristic times t* and tBU both 
increase with k. The elongation mechanism therefore delays the 
pinch-off and breakup instant. All these conclusions are valuable 
for the operating conditions of this study only. They might differ 
for other initial perturbation amplitude or wavelength since the 
capillary instability is known to deeply depend on these two 
parameters.  

 
Simulated turbulent jet atomization process 
The atomization of a turbulent jet have been calculated by 

the DNS code ARCHER. The liquid properties are those of the 
Shellsol D40. The initial diameter of the jet is Dj = 192.5 µm. 
The mean velocity is equal to 25 m/s. (These conditions are close 
to those of the turbulent jets produced by the GDI device 
presented above with an injection pressure equal to Pi = 1.1 MPa.) The initial turbulence of the jet is assumed 
homogenous and isotropic. It is characterize by a 5% turbulent 
intensity and an integral length equal to 0.08Dj. The calculation 
domain is 128x128x1024 and the whole simulation represents an 
injection time of 3 ms. Figure 15 shows an image of the 
simulated atomization process. At the beginning we see that the 
jet is perturbed by large scale disturbances only. Then, smaller 
and smaller disturbances appear and grow when going 
downstream.  

 Fig. 15: Simulated atomization process of a turbulent jet. Code 
ARCHER 

 Fig. 16: 2D projection image of the 3D simulated jet 
 
Two multi-scale analyses are conducted. The first one is a 

2D approach that intends to reproduce the analysis performed in 
the experimental work on the GDI jets presented above. 70 
images similar to the one shown in Fig. 15 are extracted from the 
simulation and 2D projection images of the jet are produced. (A 
2D projection image is shown in Fig. 16.) Then, the process of 
e2(d,t) measurement developed for the experimental images (see 
Fig. 6) is applied on the set of 2D images. The characteristic scale 
d1(t) introduced by Eq. (15) is determined from the temporal 

evolution of the surface-based scale distribution e2(d,t). The 
result is reproduced by the blue line in Fig. 9. We see an excellent 
proximity between the experimental and simulated results from 
the time at which the small scale disturbances have developed. 
This agreement is an important result. First, it somehow validates 
the simulation. Second, it says that even with simplified initial 
conditions (which is the case here for the turbulence of the jet) 
the simulated atomization process may resemble the actual one 
after the input energy has been distributed in the scale space by 
the simulation. Third, this result presents a different and new 
procedure to validate numerical simulations.  

The second analysis is 3D. It is based on the same process 
as the 2D approach, namely, the scale distribution e3(d,t) is 
determined on a portion of the jet that is delimited by an 
analyzing window. This window is slid from the beginning to the 
end of the jet and this translation is associated with a temporal 
evolution of the scale-distribution. A module of 3D scale 
distribution measurement has been developed here and included 
in the ARCHER code. The e3(d,t) measurements have been 
performed on 44 positions on each image and this has been 
repeated on 11 images. The temporal evolution of the mean 
volume-based scale distribution is extracted from these 
measurements. This evolution is shown in Fig. 17. 
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 Fig 17: Temporal evolution of the volume-based scale 
distribution of the simulated turbulent jet. 

 
At initial time, the scale distribution is linear indicating that 

the jet has an almost non-deformed cylindrical shape (see Fig. 
2). As time goes, the simulated atomization process progresses 
as a thinning mechanism recognized in the small scales by a 
continuous increase of e3(d,t) and in the large scales by a 
continuous decrease of dmax. (Such a mechanism was also 
identified on the experimental 2D scale distributions (Fig. 7).) 
The stretching rate introduced by Eq. (7) provides a 
characteristic of the thinning mechanism. In the present case, the 
thinning mechanism in the small scales is not similar to the one 
of a cylindrical ligament since the volume-based scale 
distribution is not linear (see Fig. 2). The stretching rate becomes 
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a scale dependent function. It has been calculated for all scales 
and its temporal evolution is presented for some of them in Fig. 
18.  

At all scales, the stretching rate shows a fast increase at 
earlier times followed by a sharp decrease down to a value more 
or less close to zero. This suggests a two phase atomization 
process with a decrease of the stretching during the second 
phase. This resembles the experimental observations except for 
the first phase where the stretching rate is found to increase here. 
This of course is due to the difference in turbulent initial 
conditions between the experiment and the simulation. The 
increase of the stretching rate in phase 1 characterizes the 
response of the jet to the initial homogeneous and isotropic 
turbulence. Figure 18 shows that the effect of the turbulence is 
concentrated at the very beginning of the jet history and lasts a 
very short time. This is of course due to the fact that this 
turbulence is not maintained. A complementary analysis should 
be conducted to evaluate the degree of elongation of the thinning 
mechanism as a function of the characteristics of the turbulence.  
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 Fig. 18: Stretching rate of the 3D simulated turbulent jet as a 
function of the scale 

 
Figure 18 also shows that the peak of stretching rate is 

higher and appears later as the scale decreases. This illustrates 
that the thinning mechanism operates on smaller and smaller and 
deformed liquid fragments only as time goes. Knowing the 
important influence of the thinning mechanism in small drops 
production, this distribution of stretching rate, which is probably 
connected to the decaying turbulence of the jets, might be also 
related to the final spray drop size distribution. This is an 
illustration of the new possibilities offered by the multi-scale 
analysis to investigate liquid atomization process and spray 
formation.  
MODELING ATOMIZATION PROCESSES 

This last short section addresses the question of the 
modelling of liquid atomization processes and intends to 

estimate the possible contribution of the multi-scale tool. Three 
models are rapidly introduced and discussed, namely, the model 
of successive fragmentations, the model of successive 
agglomerations and the scale-entropy diffusion model.  

In the successive fragmentation model [24, 25] the 
atomization process is described as a succession of elementary 
fragmentations of spherical drops. Each mother drop breaks into 
daughter drops whose number-based distribution characteristics 
are not dependent on the diameter of the mother drop. Equating 
this fragmentation cascade provides the temporal evolution of 
the number-based diameter distribution. Using appropriate 
assumptions, the equation of the temporal evolution of the drop 
diameter distribution becomes a Fokker-Planck type equation. 
This model is written for high Weber number atomization 
process. 

The model of successive fragmentations uses a diameter 
distribution to describe the liquid system at each time. This 
distribution implicitly characterizes an Equivalent System whose 
definition is omitted by the model. This definition must be based 
on a measureable characteristic of the atomization liquid system. 
The scale distribution could be an interesting candidate for this 
duty. The equivalent system could be a set of simple objects 
whose scale distribution is the same as the actual system. This 
idea is identical to the one that led to the mathematical 
expression for the scale distribution of the few droplets produced 
by the atomization of a stretched deformed ligament (Eq. (12)). 
This equation actually says that a set of spheres having the same 
scale distribution as the actual system exists. It is believed that 
we could extend such an approach to more complex situations. 

 
The model of successive agglomerations is due to 

Villermaux et al. [26] and Villermaux [27]. It describes an 
atomization process as a succession of agglomerations of 
elementary blobs. Blobs are defined as spheres. The initial blobs 
diameter distribution is related to shape of the liquid system at 
initial time. The blobs diameter distribution evolves to the final 
drop diameter distribution. The temporal evolution of the blubs 
diameter distribution is governed by a Boltzmann-type equation. 
This mathematic is similar to the one encountered in the 
modeling of soot aggregate formation. In atomization, this model 
has been developed to describe the last stage of the atomization 
process in which liquid fragments break under the action of the 
surface tension forces. The drop diameter distribution reported 
by this model in the one given by Eq. (11). The pertinence of this 
distribution within the context of a multi-scale analysis has been 
illustrated in the investigation dedicated to the atomization of 
stretched deformed ligaments. It is therefore believed that the 
concept of elementary blob distribution used to describe the 
liquid system could find a concrete definition by making use of 
the scale distribution.  

 
The scale entropy diffusion model has been developed by 

Queiros-Condé [28] to address the evolution of turbulent 
interfaces. It has been applied to a liquid atomization process in 
previous works [29, 30]. The atomization process is described by 
a diffusion equation: the scale entropy diffusion equation: 
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where the scale entropy (x,t) = ln(1/E2(d,t)), x = ln(d/D) (D 

being a characteristic scale of the system), (x,t) is the scale 
evolutivity function (scale-entropy flux sink function) and  is 
the scale diffusivity which characterizes the ability of a 
perturbation to diffuse in the scale space. In turbulence, Queiros-
Condé [27] reported: 
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0
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where l0 is the integral scale,  the kinematic viscosity and 

Re is the Reynolds. In atomization, the following expression was 
obtained [29]: 
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where WeL is the liquid Weber number and µ* is an 

equivalent dynamic viscosity. The similarity between Eqs. (21) 
and (22) is notable. The Reynolds number in turbulence (Eq. 
(21)) is replaced by a liquid Weber number in atomization (Eq. 
22)). Although this result may appear pertinent at first glance, it 
questions the capacity of the model to properly take the liquid 
turbulence into account. A part of the answer to this question has 
been given in a recent investigation [12] in which it was 
established that the entropy diffusion model introduced by Eq. 
(20) is valuable in the second phase of the atomization process 
only, i.e., where the stretching rate at small scales are controlled 
by surface tension forces. In other words, a different diffusion 
equation should be proposed for the first phase of the atomization 
process during which the effect of turbulence is dominant.  
CONCLUSIONS 

The atomization of a liquid system in a gaseous environment 
is a process of continuous variation of the shape of the system 
until a final stable state is reached. Because of the action of the 
surface tension forces which characterize the liquid-gas 
interface, this final state is a flow of small, stable and spherical 
drops. Having several origins, the disturbances involved in the 
system deformation introduce spectra of characteristic length 
and time scales. Any investigation of liquid atomization 
processes must take this into account and therefore must be 
multi-scale. The present approach based on the notion of scale 
distribution has been motivated by this necessity. The 
applications described in this paper demonstrate the pertinence 
of the approach that improves the physical understanding of the 
atomization process and provides alternative tools to conduct 
further investigations.  

An atomization process is a combination of deformation and 
breakup mechanisms. The multi-scale analysis shows that the 

deformation mechanisms may create interface whereas the 
breakup mechanisms consume interface. To improve the 
efficiency of the atomization process, the creation of interfaces 
during the deformation mechanisms should be favored. The 
multi-scale analysis allows identifying the presence of a thinning 
mechanism at small scales during the deformation stage. It 
represents the formation of small structures that develop as the 
breakup stage is approached and is therefore visible until this 
breakup event occurs. Due to the multi-scale analysis, the 
quantification of this mechanism is possible. It is found that the 
thinning mechanism is due either to an elongation mechanism or 
a contraction mechanism. In the first case, the interface area is 
increased and the breakup is delayed and operates on smaller 
liquid fragments. The atomization is therefore improved. Thus, 
mechanisms creating elongation at small scales should be 
favored. Those mechanisms can be imposed by the dynamic of 
the initial liquid system. In particular, the turbulence of the liquid 
system can fulfil this role. However, the present analysis reveals 
that the effects of the turbulence on the development of the 
thickening mechanism at small scales are rapid and don’t last 
long since the turbulence is not maintained. Thus, atomization 
processes appear as a two-phase mechanism: during phase 1, the 
deformation mechanism is controlled by the liquid system 
dynamic, during phase 2 it is controlled by the surface tension 
forces. 

All these results demonstrate the interesting potential of the 
multi-scale approach that allows handling experimental and 
simulation results in a more pertinent and constructive way as 
usually done. Furthermore, the notion of scale distribution shows 
an interesting potential in the domain of liquid atomization 
modeling.  
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