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Abstract.   EEG-fMRI data fusion provides a better insight of the brain activity due to its 
high spatiotemporal resolution. The current paper presents a new framework on EEG-fMRI 
data symmetric data fusion based on Dempster Shafer theory. Basically, symmetric methods 
require the use of a common theoretical model to explore and explain Electroencephalogram 
(EEG) and functional magnetic resonance imaging (fMRI) data jointly. Dempster Shafer 
theory has a multivariate use in resolving problems related to uncertainty. Accordingly, Basic 
Belief Assignment and the combination rule offered by such theory allow fusing multimodal 
sources such EEG (temporal modality) and fMRI (spatial modality). In particular, masse 
functions for each modality have been calculated. Then, the combination rule has been 
computed. Finally, this measure has been used to detect the activated areas in the brain via 
clustering using the potential-based hierarchical agglomerative clustering method. Both real 
auditory and artificial data simulation have been employed to evaluate the performance of the 
proposed approach. Also, true, false activation rates and Receiver Operating Characteristic 
(ROC curve) have been used to establish a comparison with jointICA method. The obtained 
results have clearly shown the ability of the introduced approach to outperform a standard 
method of data analysis to reveal a better activation map. 

Keywords-; EEG-fMRI data fusion; symmetric as-symmetric approach; BOLD, HRF; 
Dempster Shafer theory; PHA method ; 

1  Introduction 

Electroencephalogram (EEG) is a non- invasive technique that measures the electrical activity 
of the brain [1]. It has gradually gained considerable attention of neuroscientists due to its high 
spatial resolution. Also, functional Magnetic Resonance Imaging (fMRI) [2] is a useful technique 
for measuring different attributes of the brain activity.  Indeed, both of EEG and fMRI techniques 
have shown their efficiency in revealing a better insight of the brain activity.  

Despite that, both EEG and fMRI modalities suffer from some limitations. On the one hand, 
fMRI data analysis relies on slow mechanisms such as blood flow, oxygen consumption and 
metabolism that yield only an indirect measure of the evoked BOLD (Blood-Oxygen-Level 
Dependent) signals. Given this, it is difficult to estimate the neural activity only from 
hemodynamic response. Also, it has been clearly observed that fMRI suffers from an ill-posed 
temporal inverse problem (i.e poor temporal resolution). On the other hand, the EEG modality 
suffers from spatial inverse problem besides noise raised due to the unavoidable artifacts during 
the course of the experiment that can strongly degrade the EEG signals quality [3] . 

Both EEG and fMRI data measure neural activity. The EEG, revealing the event-related 
potentials (ERP) for investigating the psychophysiological states and information processing, is 
typical for the electrical activity. It is worth noticing that the evoked electromagnetic and 
metabolic responses detected by both EEG and fMRI are not essentially the result of the same 
primary neuronal processes [5].  

Given that strengths and weaknesses of fMRI and EEG complete each other, simultaneous 
EEG-fMRI acquisition applications are fast becoming a key technique to provide a more 
comprehensive understanding of the nature of the cerebral activity with its enhanced 
spatiotemporal resolution [4].  Thus, several works have been recently developed involving the 
EEG/fMRI fusion.  
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Mainly, the existing potential approaches devoted to develop EEG-fMRI integration procedures 
can be divided into two categories.  In asymmetric methods, prior information of one modality is 
considered as a cause or a predictor of the second modality. In other word, it serves as a guide for 
the analysis of the other modality. Asymmetric approaches include: (i) fMRI informed EEG , 
known as fMRI-constrained EEG imaging, that employs spatial information from fMRI signal for 
reconstructing the source of the EEG signal [6] and (ii) EEG-informed fMRI technique that is 
concerned with modelling the fMRI signal with features from EEG convolved with the 
Hemodynamic Response Function (HRF) [7, 8]. EEG-fMRI symmetric methods are the second 
category of EEG-fMRI integration techniques. Mainly, the focus of these approaches is devoted to 
solving the inverse problem. They imply the use of a common forward or generative model to 
explore EEG and fMRI data jointly. Besides, they required some given knowledge from 
experience on the subject. [9, 10, 11, 12, 13].   

To fuse the EEG and fMRI sources, a framework proposed in [10] employs Bayesian theory to 
generate a common generative model. In this method, common parameters have been used to 
represent the spatial characteristics of both EEG and fMRI data. Therefore, the lack of detailed 
information about neurovascular coupling has not confused this fusion approach. Independent 
Component Analysis (ICA) has provided a powerful framework for integrating both modalities [6, 
14]. To identify the component in EEG and fMRI independently, spatial ICA (sICA) for fMRI 
data and temporal ICA (tICA) for the EEG signal have been used.  Due to the variation in spatial 
and temporal modalities, two methods have emerged: JointICA [15, 16] and parallel-ICA 
algorthim [17]. Another similar approach is a parallel framework for Spatial–Temporal EEG/fMRI 
Fusion (STEFF) [6]. Typically, STEFF has used an Empirical Bayesian (EB) model to combine 
temporal components from EEG and spatial components from fMRI obtained by ICA technique. 
Besides providing a mechanism for adjusting the problem of ignorance in ICA, STEFF has shown 
its ability to yield a flexible tool for imaging the EEG sources using information from fMRI data. 
For further detail, the reader is invited to see [ 18, 19,20]). Also, Dynamic Causal Model (DCM) is 
another framework for models of bioelectric and metabolic activity in neuronal populations 
[21,22].  

 It is worth noticing that any symmetric fusion confronts three main problems: (i) The 
complexity of real metabolic-hemodynamic that renders the estimation of model-driven fusion 
problematic [11], (ii) The common substrate underlying EEG and fMRI signals should be 
identified by the fusion method and (iii) the uncertainty must be reduced by the fusion method 
when inferring this common subspace [10]. Given this, an extensive research has been conducted 
on EEG-fMRI fusion data analysis. However, EEG-fMRI fusion requires a common theoretical 
framework to analyze and combine information sources with different natures (modalities).  

To enhance the accuracy of the combined EEG-fMRI analysis, the current work introduces a 
new approach based on symmetric fusion using Dempster Shafer evidence theory (DS). Basic 
Belief function and combination rule have been employed as major keys in the proposed method. 
Mainly, DS theory permits to study different data like EEG and fMRI because the combination 
rule measures enable to join these data. BOLD signal is usually considered to have the same time 
evolution as the EEG [12]. Given this, the HRF model permits analyzing fMRI and EEG signals in 
simultaneous EEG-fMRI data. Thus, in this approach, the HRF model has been used as a key 
element [23, 24, 25, 26] for modelling both EEG and fMRI modalities by DS theory to fuse 
spatiotemporal information. To detect activated areas in the brain, the Potential-Based Hierarchical 
Agglomerative (PHA) [27] have been employed. Therefore, PHA clustering method has time 
complexity of O(N2) and allows to choose the max number of  clusters , denoted as (C). PHA 
generates automatically a number of clusters that is less than or equal to the selected max number 
(C). Among these clusters, we have shown the target cluster and more information like the number 
of voxels by cluster and the centroid of cluster denoted by (c). 

The remaining paper is organized as follows: Section two describes the basics of Dempster 
Shafer theory. Besides the brief review of the hemodynamic response model, the proposed model 
by using Dempster Shafer is introduced in section three. Section four gives details on the proposed 
approach. The conducted experiments on real and simulation data are discussed with the various 
findings in section five. At last, a conclusion is given. 

2  Background of the Dempster-Shafer evidence theory  

Dempster-Shafer evidence theory has shown its efficiency in solving real problems [28]. It has 
been widely used in medical imaging and signal processing like prediction, classification, 
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segmentation and information fusion [29,30]. In this work, two basic rules of DS theory are 
required: (i) Basic Belief Assignment (BBA) [31,32], (ii) Belief function, bel (.) and (iii) Dempster 
rule of combination. Thus, these fundamentals are described respectively as follows:  

Definition1: Basic Belief Assignment (BBA) is a key point of evidence theory, referred to as 
m(.), and has the following form: 

m ∅ = 0, and m Ai!"⊆⊖ = 1 (1) 

Definition 2:  Belief function, bel (.).Let θ = θ!, θ!,… . , θ!  be a finite set of possible 
hypothesis. This set refers to the frame of discernment, and its power set is denoted by 2� where: 

2! = ∅, θ! , θ! ,… . , θ! , θ! ∪ θ! , θ! ∪ θ! ,… . θ  
bel (.) is described as: 

bel Ai = m Ai!"⊆!   (2) 
DS theory provides the combination rule that join several masses functions in one single masse 

probability of all modalities. The focus of this work has been also placed on employing the 
combined rule for pooling of evidence from two belief functions, Bel1 and Bel2 

We assume two sources of evidence: B for EEG and C for fMRI are represented by respective 
subsets of θ : B1,...,Bm and C1,...,Cn. Probability density functions m1 and m2 are defined on B and C 
respectively. The Dempster rule of combination for combining two sets of masses m1 and m2 is 
defined as: m!" ∅ = 0  . A new value m12(A) is calculated for each subset of θ as follows: 

 

m!"(A) =
!

!!!
m! B m!!∩!!!!∅ (C) (3) 

where k denotes a measure of the amount of conflict between two evidences. If k = 1 the two 
evidences cannot be combined because their cores are disjoint. This rule is commutative, 
associative, but not idempotent or continuous. k is calculated as follows: 

k = m! B m!!∩!!∅ (C)  (4) 
In what follows, the notations mfMRI (.), mEEG (.) and mEEG,fMRI (.) have been used to refer to BBA 

(fMRI), BBA (EEG) and the rule of combination respectively. 

3  Modelling HRF by Dempster Shafer method  

The canonical model proposed in [28] is one of the numerous HRF models that have been 
developed in literature. It has a vital role to play in characterizing the onset of the stimulus. This 
work focuses on the study of the so-called sum two gamma functions [33]. The first is for 
modelling the peak whereas the second is for modelling undershoots. The HRF model that is 
typical for BOLD impulse response is presented in Figure 1. 

 

Undershoot 

B
rie

f S
tim

ul
us

 

Peak 

Time(s) 

H
R

F 



4 
 

Figure 1.    Canonical hemodynamic response function model  

To extract more information about the activated areas, the HRF function has been modelled as 
follows: First, HRF function has been divided into two hypotheses 𝜃! , 𝜃! .  𝜃! corresponds to 
modelling the neural activation and determining a peak (on activation). 𝜃!  is assigned to 
modelling the undershoot (off activation). In particular, the first hypothesis is the focus of the 
current work. It is divided into two parts A and D where A stands for degrees of belief included in 
D. In other words, (D minus A) stands for uncertainty. Figure 2 depicts the proposed model. 

 
Figure 2.  :  the proposed model of Dempster Shafer for Canonical hemodynamic response function  

To compute basic belief assignments BBA and other Dempster Shafer metrics, the m(ti) has 
been first computed using equations 5 and 6. Then, belief measures of each modality (fMRI and 
EEG) have been selected. Thus, the formula described bellow has been used, it consists in the 
transformation of each signal S(t) of fMRI data or EEG signal into density of probability function 
by using the formula:    

 m ti = !
!

S t dt!"
!"!!  for i = 1 to  n     m(ti)=0  ,  i=0    (5) 

In the above equation, α is calculated as:  

α = S t dt!"
!      (6) 

We obtain vectors of masses function for each modality. Then, these vectors have been 
employed for computing combination rule measures using the equations (3) and (4) that need to 
determine the intersection intervals  𝐴 = 𝐵 ∩ 𝐶 which are different of empty set ∅. Figure 3 
illustrates how to detect the interval A. 
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Figure 3.  Figure shows how to detect the interval A  

4  Proposed Method  

As will be illustrated in Figure 4, the proposed scheme for EEG-fMRI symmetrical fusion is as 
follows:  (i) pre-processing both fMRI and EEG data, (ii) generating HRF model by DS method, 
(iii) Calculating the mfMRI() for each voxel, (iv) computing mEEG() after extracting ERP from EEG 
signals and then, (v) mfMRI() and mEEG() metrics have been used to compute mfMRI,EEG() measure. This 
combination rule measure (mfMRI,EEG()) has been used to extract activated voxels via clustering. To 
separate the activated voxels from non-activated voxels, the clustering methods have been used 
because they can separate data into groups based on certain similarities. In this step, the PHA has 
been employed. As mentioned above, PHA generates automatically a number of clusters which is 
less than or equal to the selected max number (C). Furthermore, among these clusters, we show the 
target cluster and more information like the number of voxels by cluster and the centroid of cluster 
denoted by (c) as well. The process is described in Dempster Shafer algorithm (algorithm DS) and 
consists of six steps as follows:    

Algorithm DS: 

• IMPUT: fMRI data, EEG signals, HRF  

• OUTPUT: mfMRI (.)  , mEEG (.), mEEG,fMRI (.), activated areas 

• step 1: first model HRF by using DS method, described in section 2 

• step 2: project HRF model with fMRI signal and compute mfMRI()  vector for each voxels  
using  equations  (5) and (6).  

• step 3: from EEG to ERP  

• step 4: the same process applied in step 2 has been repeated on ERP to compute vector of 
mEEG() 

• step 5: compute the combination rule measure using the equations aforementioned  in (3) 
and (4) 

• step 6: use PHA method to cluster vector of mEEG,fMRI (.) combination measure in order to 
identify active areas . 
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Figure 4.   flowchart of the proposed method. The chart is devided into three main parts. The blue part concerns  
preprocess and modelisation of fMRI data.The green part is about EEG data and contains three steps; preprocessing, 
extracting ERP and modelisation by DS. The red part denotes clustering extract activated voxels 

5  Experiments and results 

 The proposed method that relies on Dempster Shafer theory has been evaluated on both 
synthetic and real data. The performance of the introduced method has been based on statistical 
measurements. The MATLAB has been used for all implementations. At last, a comparison with 
jointICA has been provided to evaluate the efficiency of the proposed method. The evaluation 
metrics and experimental results are discussed below. 

5.1   Evaluation metrics 

This subsection describes the evaluating metrics serving to analyze the performance of the 
introduced approach and to establish a comparison with the jointICA. Basically, two main metrics 
have been given in [34]: (i) True activation rate (TAR) presents the ratio between the number of 
voxels correctly identified as activated and the total number of truly activated voxels and (ii) false 
activation rate (FAR) is known as the ratio between the number of voxels incorrectly identified as 
activated and the total number of truly non-activated voxels. A more comprehensive description of 
these two metrics allows to correctly plotting the Receiver Operating Characteristics Curve ( ROC) 
[35] for comparing between methods.  

To compute these measures, it should be noted that jointICA has been performed on the basis of 
the t-test that uses a p-value or Z-threshold to map the activated voxels.  The introduced method 
relies on the combination rule mEEG,fMRI ( ) to separate between activated and non-activated voxels. 
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5.2   Artificial  dataset  

First, the proposed method has been tested on artificial dataset developed by Correa et al. [36] 
with their simulation algorithm. This dataset is available at 
(http://mlsp.umbc.edu/simulated_fmri_data.html). It contains eight sources where each simulated 
source is of 60 × 60 image with 100 point courses. However, in the current experiment, the virtual 
source for fMRI has been created into a two dimensional spatial map, as depicted in Figure 5, as 
the same size of the real fMRI data. Given that the information obtained from the brain is a 
stochastic process, a collection of sinusoid signals of the ERP data has been considered.  

Let φ be the Gaussian random delay distributed with zero mean and unit variance and let d be 
the amplitude. Accordingly, ERP sources have been simulated by using the formula: 

x n = 100×d! sin 2πfn + φ ,     n = 1…… 200  (7) 
This sinusoid signal is with a mixture of very low frequencies from [0.014- 0.811 Hz]  
 

 
(a) 

 
(b) 

Figure 5.   Artificial data taken from [36].  (a) Artificial fMRI data contains eight sources where each simulated source is 
of 60 × 60 image with 100 point courses  (b) the selected ERP simulation generated  by using( equa. 7) 

The source S with a size of (8×3339) has been obtained by mixing the different FMRI sources. 
In the next step, the Demspter method has been applied on these data to get the mfMRI( ). Then, the 
same algorithm has been applied on ERP dataset to compute mEEG( ). Once both mEEG and mfMRI have 
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been obtained, the mEEG.fMRI ( ) have been computed by using the combination rule. The obtained mEEG,fMRI 

( ) has been clustered via PHA method. In this process, (k=8) has been chosen according to the 
number of simulated data sources. The obtained results are presented in Figure 5 where different 
slices have been clearly shown (mixed areas) in different sources. This figure presents the mixed 
activated areas detected by the proposed method. As it is clear in the first four slices on the left, the 
activated regions are depicted. The different sources (S1, S2,S5 , S6 and part of S4) figure 6 (a) .  
Slices on the right show the activated areas of each source in (S4, S6 and S8).  Comparing our 
results with those obtained with jointICA, it can be seen that jointICA detects only (S3,S4,S5,S6) 
sources (see Figure 6 (b)). Thus, the proposed approach has obviously shown its ability to yield a 
clear distinction between areas in terms of activation. 

 
Figure 6.  (a) The obtained results by the proposed method that show the mixed area in each slice  (b)  the JointICA 

results 

Table1 describes the quantitative comparison between introduced method and jointICA using 
the true activation rate (TAR)  and false activation rate (FAR). It’s clear from this table that each 
method achieves better result more than 90.25%.  Also from this table the proposed method 
detect mor accratly than jointICA  for the sources (S1,S2, S6 ,S7, S8). Then jointICA outperform 
the proposed method for sources (S3,S4,S5). Table 2 show the average of measures (TAR and 
FAR). 
Table 1  present true and false activation rates by the proposed method and jointICA 

source S1 S2 S3 S4 S5 S6 S7 S8 
Proposed 
method 

TAR% 97.25 93.50 98.25 90.75 98.50 96.75 92.75 91.75 
FAR 0.0275        0.0650 0.0175     0.0925    0.0150     0.0325     0.0725     0.0825 

jointICA TAR% 93.50 91.75 98.50 93.00 98.75 94.25 91.25 90.25 
FAR 0.0650     0.0825     0.0150     0.0700     0.0125    0.0575     0.0875     0.0975 

 

Table 2: Average of TAR and FAR of the proposed method and jointICA to the simulated dataset. 

 AVG( TAR) AVG( FAR) 

Proposed method 94,93% 0.051 
jointICA 93.87% 0.061 

 
From the outcome, it is very motivating to identify more activated areas. Thus, the introduced 

method can outperform better than the jointICA method in detecting more accurate activation for 
the simulated dat. 
 

5.3   Real data 

Besides simulation data, the current method has been evaluated also on a real fMRI and EEG 
dataset to access its performance. This data was described in [15], and was collected while 

(a) (b)



9 
 

participants were performing an auditory oddball. Prior to analysis, data goes through a series of 
preprocessing steps to identify and remove artifacts and validate model assumptions as well. 
Therefore, the fMRI slices require to be spatially realigned at first. However, spatial smoothing 
may cause unforeseen changes to occur into data. Thus, for better performance, spatial smoothing 
has been avoided. Then, the mean value has been subtracted from each of the time series and the 
variance has been normalized to a unit. The previous steps have been realized via SPM tools 
(Statistical Parametric Mapping).then the proposed method was applied on each voxel. In this 
case, the mfMRI() and mEEG() was computed by using equations 5 and 6. Then, the both modalities 
fMRI and EEG data was fuse by employing the combination rule in order to get avector of mEEG,fMRI() 
by using equations 3 and 4 . Finally this vector is used for extracting activated voxels by using 
PHA clustering method. In addition we proceed to change the max number of cluster (k) by 
increment then we calculate the centroid (c) with the number of voxels in the target cluster. Then, 
the activated regions were shown. The same process has been repeated till no new cluster will be 
generated. Table 3 presents the results of mEEG,fMRI() clustering by PHA method. The plots depicted in 
Figure 7 present the various numbers of voxels by max number of clusters.  

Table 3 result of mEEG,fMRI () clustering by PHA method 

Number max of  
cluster (C) 

Number of voxels  Center c 

3 2235 0.0053 
4 2184 0.0051 
5 2184 0.0051 
6 2184 0.0051 
7 2184 0.0051 
8 2184 0.0051 
9 1378 0.0062 
10 822 0.0069 
11 783 0.0068 
12 783 0.0068 
13 783 0.0068 
14 783 0.0068 
15 783 0.0068 

 

 
Figure 7.   (a) Variation in the number of voxels by number max of clusters k. 

 By varying the max number (k), false positive voxels may be obtained if k is small or some 
voxels may be neglected if (k) is great. Thus, a threshold should be selected for better distinction 
of activated voxels. Thus, the average of the centroids of the target clusters has been used. By 
computing the average of the centroids (c), we get 0.006. Figure 8. (a) Illustrates slices that 
indicate activated regions while figure 8. (b) shows the activated areas for both components (red 
and blue).  Qualitatively it is clear that introduced method detect activated region like jointICA 
method applied on the auditory data. In the term of quantitative comparison of the results obtained 
with the proposed approach and those obtained with jointICA that has been applied to analyze 
simultaneous EEG-fMRI data that is illustrated in Figure 9. 
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(a) 

 
(b) 

Figure 8.  : (a) Activated areas in some slices by proposed method (b) Activated areas in slices by jointICA 
method, provided in both coulor red and blue for each compenent 

As stated above in the current study, the proposed method depends on DS method that consists 
of two main components: The HRF model obtained by DS and mEEG,fMRI () measure. For selecting 
activated voxels, PHA method must be used for clustering this measure.  

To validate the efficiency of the introduced approach, a comparison between the proposed 
algorithm and jointICA has been performed.  It should be noted that jointICA is performed on the 
basis of the t-test that uses a p-value or Z-threshold to map the activated voxels. Given that the 
definition of p-value is similar to that of the false activated position rate in the jointICA, the p-
value can be used as a metric for choosing thresholds. Thus, several plots have been generated for 
both true and false activation rates at different thresholds (mEEG,fMRI, p-value). Consequently, the 
experiment has been performed by changing thresholds for computing the metrics. Figure 9 
depicts the variation of true and false activation rates according to mEEG,fMRI() using the proposed 
algorithm. It seems obvious that the number of true activated voxels tends to be lower in true 
activation rate. However, the pace of false activation rate remains stable in the interval [0.001- 
0.005] then it gradually decreases. 
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(a) 

 
(b) 

Figure 9.  . Number of true positives (a) and false positives (b) using different thresholds of  (mEEG,fMRI). 
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(b) 
Figure 10.   The number of (a) false activation rate (b) by using several p-values 

 

Figure 11.  ROC curves for the comparison of jointICA and the introduced method 

Figure 10 (a) shows that the true activation rate remains the same till the p-value reaches 0.05 
when it starts to fall down gradually. Figure 10 (b) illustrates that false activation rate continues to 
decrease gradually when the p-value increases and sometimes it remains fixed as in] 0.025, 0.035[. 
We then specifically compare the obtained results with those gained by using jointICA. The ROC 
curves for both methods are shown in Figure 11. It is obviously observed that the ROC curve 
obtained by jointICA is much lower than that obtained by the proposed method. While joint-ICA 
provided few true positives with few false positives, the new method has detected more true 
positives without increasing the number of false position. However, the area under ROC curve for 
DS method is 0.877 and 0.733 for jointICA method. Therefore, this comparison reveals that the 
proposed algorithm provides a better performance in terms of identifying more true positives than 
jointICA. 
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6  Conclusion 

This paper introduces a new framework to identify activation areas in simultaneous EEG-fMRI 
data. Basically, the approach relies on Dempster Shafer theory taking into account the application 
of basic belief assignment and rule of combination. PHA method has been also employed to 
clustering the obtained measures for separate activate voxels from non-activated ones. An 
extensive performance analysis has been provided with both artificial and real datasets. Compared 
to joint ICA, the obtained activation map confirmed the efficiency of the proposed method for 
EEG-fMRI fusion in yielding a clear distinction between activated and non-activated areas. 
Although the focus has been placed on the analysis of auditory data, the introduced approach can 
be extended to explore various aspects of brain activity and to detect brain illnesses such as 
epilepsy. 
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