Global climate modelling of Saturn’s atmosphere, Part V: Large-scale vortices - Université de Paris - Faculté des Sciences
Journal Articles Icarus Year : 2025

Global climate modelling of Saturn’s atmosphere, Part V: Large-scale vortices

Abstract

This paper presents an analysis of large-scale vortices in the atmospheres of gas giants, focusing on a detailed study conducted using the Saturn-DYNAMICO global climate model (GCM). Large-scale vortices, a prominent feature of gas giant atmospheres, play a critical role in their atmospheric dynamics. By employing three distinct methods-manual detection, machine learning via artificial neural networks (ANN), and dynamical detection using the Automated Eddy-Detection Algorithm (AMEDA)-we characterize the spatial, temporal, and dynamical properties of these vortices within the Saturn-DYNAMICO GCM. Our findings reveal a consistent production of vortices due to well-resolved eddy-to-mean flow interactions, exhibiting size and intensity distributions broadly in agreement with observational data. However, notable differences in vortex location, size, and concentration highlight the model's limitations and suggest areas for further refinement. The analysis underscores the

Fichier principal
Vignette du fichier
1-s2.0-S0019103524003622-main.pdf (3.79 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

insu-04694942 , version 1 (11-09-2024)
insu-04694942 , version 2 (13-09-2024)

Identifiers

Cite

Padraig T Donnelly, Aymeric Spiga, Sandrine Guerlet, Matt K James, Deborah Bardet. Global climate modelling of Saturn’s atmosphere, Part V: Large-scale vortices. Icarus, 2025, 425 (January), pp.116302. ⟨10.1016/j.icarus.2024.116302⟩. ⟨insu-04694942v2⟩
295 View
55 Download

Altmetric

Share

More