Permanence and periodic solution for a modified Leslie-Gower type predator-prey model with diffusion and non constant coefficients - Laboratoire de Mathématiques Appliquées du Havre
Article Dans Une Revue BIOMATH Année : 2017

Permanence and periodic solution for a modified Leslie-Gower type predator-prey model with diffusion and non constant coefficients

Résumé

In this paper we study a predator-prey system, modeling the interaction of two species with diffusion and T-periodic environmental parameters. It is a Leslie-Gower type predator-prey model with Holling-type-II functional response. We establish some sufficient conditions for the ultimate boundedness of solutions and permanence of this system. By constructing an appropriate auxiliary function, the conditions for the existence of a unique globally stable positive periodic solution are also obtained. Numerical simulations are presented to illustrate the results.
Fichier principal
Vignette du fichier
roumen,+916.pdf (953.27 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-02304489 , version 1 (22-05-2024)

Licence

Identifiants

Citer

Moussaoui Ali, M. A. Aziz Alaoui, R. Yafia. Permanence and periodic solution for a modified Leslie-Gower type predator-prey model with diffusion and non constant coefficients. BIOMATH, 2017, 6 (1), pp.1707107. ⟨10.11145/j.biomath.2017.07.107⟩. ⟨hal-02304489⟩
40 Consultations
13 Téléchargements

Altmetric

Partager

More