Remotely sensed rivers in the Anthropocene: state of the art and prospects - Ecole Nationale des Travaux Publics de l'Etat
Article Dans Une Revue Earth Surface Processes and Landforms Année : 2019

Remotely sensed rivers in the Anthropocene: state of the art and prospects

Résumé

The rivers of the world are undergoing accelerated change in the Anthropocene, and need to be managed at much broader spatial and temporal scales than before. Fluvial remote sensing now offers a technical and methodological framework that can be deployed to monitor the processes at work and to assess the trajectories of rivers in the Anthropocene. In this paper, we review research investigating past, present and future fluvial corridor conditions and processes using remote sensing and we consider emerging challenges facing fluvial and riparian research. We introduce a suite of remote sensing methods designed to diagnose river changes at reach to regional scales. We then focus on identification of channel patterns and acting processes from satellite, airborne or ground acquisitions. These techniques range from grain scales to landform scales, and from real time scales to inter-annual scales. We discuss how remote sensing data can now be coupled to catchment scale models that simulate sediment transfer within connected river networks. We also consider future opportunities in terms of datasets and other resources which are likely to impact river management and monitoring at the global scale. We conclude with a summary of challenges and prospects for remotely sensed rivers in the Anthropocene.
Fichier principal
Vignette du fichier
Remotely+Sensed+rivers+in+the+Anthropocene_FinalwithFigure.pdf (2.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02485109 , version 1 (06-01-2025)

Identifiants

Citer

Hervé Piégay, Fanny Arnaud, Barbara Belletti, Mélanie Bertrand, Simone Bizzi, et al.. Remotely sensed rivers in the Anthropocene: state of the art and prospects. Earth Surface Processes and Landforms, 2019, 45 (1), pp.157-188. ⟨10.1002/esp.4787⟩. ⟨hal-02485109⟩
177 Consultations
0 Téléchargements

Altmetric

Partager

More